Oxidative Stress and Dopaminergic Metabolism : A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies

Copyright© Bentham Science Publishers; For any queries, please email at epubbenthamscience.net.

Reactive oxygen species (ROS)-induced oxidative stress triggers the vicious cycle leading to the degeneration of dopaminergic neurons in the nigra pars compacta. ROS produced during the metabolism of dopamine is immediately neutralized by the endogenous antioxidant defense system (EADS) under physiological conditions. Aging decreases the vigilance of EADS and makes the dopaminergic neurons more vulnerable to oxidative stress. As a result, ROS left over by EADS oxidize the dopamine-derived catechols and produces a number of reactive dopamine quinones, which are precursors to endogenous neurotoxins. In addition, ROS causes lipid peroxidation, uncoupling of the electron transport chain, and DNA damage, which lead to mitochondrial dysfunction, lysosomal dysfunction, and synaptic dysfunction. The mutations in genes such as DNAJC6, SYNJ1, SH3GL2, LRRK2, PRKN, and VPS35 caused by ROS have been associated with synaptic dysfunction and the pathogenesis of Parkinson’s disease (PD). The available drugs that are used against PD can only delay the progression of the disease, but they produce various side effects. Through their antioxidant activity, flavonoids can substantiate the EADS of dopaminergic neurons and disrupt the vicious cycle incepted by oxidative stress. In this review, we show how the oxidative metabolism of dopamine generates ROS and dopamine-quinones, which then exert unrestrained OS, causing mutations in several genes involved in the proper functioning of mitochondrion, synapse, and lysosome. Besides, we also present some examples of approved drugs used for the treatment of PD, therapies in the clinical trial phase, and an update on the flavonoids that have been tested to boost the EADS of dopaminergic neurons.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - year:2023

Enthalten in:

CNS & neurological disorders drug targets - (2023) vom: 09. Juni

Sprache:

Englisch

Beteiligte Personen:

Rasool, Aamir [VerfasserIn]
Manzoor, Robina [VerfasserIn]
Ullah, Kaleem [VerfasserIn]
Afzal, Ramsha [VerfasserIn]
Ul-Haq, Asad [VerfasserIn]
Imran, Hadia [VerfasserIn]
Kaleem, Imdad [VerfasserIn]
Akhtar, Tanveer [VerfasserIn]
Farrukh, Anum [VerfasserIn]
Hameed, Sahir [VerfasserIn]
Bashir, Shahid [VerfasserIn]

Links:

Volltext

Themen:

Antioxidants
Dopaminergic neuron
Flavonoids.
Journal Article
Oxidative stress
Parkinson’s disease
ROS

Anmerkungen:

Date Revised 18.07.2023

published: Print-Electronic

Citation Status Publisher

doi:

10.2174/1871527322666230609141519

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM358048958