Antiviral Flavonoids : A Natural Scaffold with Prospects as Phytomedicines against SARS-CoV2

Copyright© Bentham Science Publishers; For any queries, please email at epubbenthamscience.net..

Flavonoids are vital candidates to fight against a wide range of pathogenic microbial infections. Due to their therapeutic potential, many flavonoids from the herbs of traditional medicine systems are now being evaluated as lead compounds to develop potential antimicrobial hits. The emergence of SARS-CoV-2 caused one of the deadliest pandemics that has ever been known to mankind. To date, more than 600 million confirmed cases of SARS-CoV2 infection have been reported worldwide. Situations are worse due to the unavailability of therapeutics to combat the viral disease. Thus, there is an urgent need to develop drugs against SARS-CoV2 and its emerging variants. Here, we have carried out a detailed mechanistic analysis of the antiviral efficacy of flavonoids in terms of their potential targets and structural feature required for exerting their antiviral activity. A catalog of various promising flavonoid compounds has been shown to elicit inhibitory effects against SARS-CoV and MERS-CoV proteases. However, they act in the high-micromolar regime. Thus a proper leadoptimization against the various proteases of SARS-CoV2 can lead to high-affinity SARS-CoV2 protease inhibitors. To enable lead optimization, a quantitative structure-activity relationship (QSAR) analysis has been developed for the flavonoids that have shown antiviral activity against viral proteases of SARS-CoV and MERS-CoV. High sequence similarities between coronavirus proteases enable the applicability of the developed QSAR to SARS-CoV2 proteases inhibitor screening. The detailed mechanistic analysis of the antiviral flavonoids and the developed QSAR models is a step forward toward the development of flavonoid-based therapeutics or supplements to fight against COVID-19.

Medienart:

E-Artikel

Erscheinungsjahr:

2024

Erschienen:

2024

Enthalten in:

Zur Gesamtaufnahme - volume:24

Enthalten in:

Mini reviews in medicinal chemistry - 24(2024), 1 vom: 17., Seite 39-59

Sprache:

Englisch

Beteiligte Personen:

Saha, Chiranjeet [VerfasserIn]
Naskar, Roumi [VerfasserIn]
Chakraborty, Sandipan [VerfasserIn]

Links:

Volltext

Themen:

Antiviral
Antiviral Agents
EC 3.4.-
Flavonoid-based therapeutics.
Flavonoids
Journal Article
Peptide Hydrolases
Protease Inhibitors
Protease inhibitors
QSAR
RNA, Viral
SARS-CoV2

Anmerkungen:

Date Completed 11.01.2024

Date Revised 11.01.2024

published: Print

Citation Status MEDLINE

doi:

10.2174/1389557523666230503105053

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM356416984