Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation

© 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd..

Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+ /NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+ -dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+ -dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+ , that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+ -sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:22

Enthalten in:

Aging cell - 22(2023), 7 vom: 25. Juli, Seite e13852

Sprache:

Englisch

Beteiligte Personen:

Mishra, Saurabh [VerfasserIn]
Welch, Nicole [VerfasserIn]
Karthikeyan, Manikandan [VerfasserIn]
Bellar, Annette [VerfasserIn]
Musich, Ryan [VerfasserIn]
Singh, Shashi Shekhar [VerfasserIn]
Zhang, Dongmei [VerfasserIn]
Sekar, Jinendiran [VerfasserIn]
Attaway, Amy H [VerfasserIn]
Chelluboyina, Aruna Kumar [VerfasserIn]
Lorkowski, Shuhui Wang [VerfasserIn]
Roychowdhury, Sanjoy [VerfasserIn]
Li, Ling [VerfasserIn]
Willard, Belinda [VerfasserIn]
Smith, Jonathan D [VerfasserIn]
Hoppel, Charles L [VerfasserIn]
Vachharajani, Vidula [VerfasserIn]
Kumar, Avinash [VerfasserIn]
Dasarathy, Srinivasan [VerfasserIn]

Links:

Volltext

Themen:

0U46U6E8UK
7664-41-7
Acetylation
Ammonia
EC 3.5.1.-
Human inducible pluripotent stem cells
Journal Article
Mitochondria
Multiomics
NAD
Redox
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Sirtuin
Sirtuin 3
Sirtuins
Skeletal muscle
Systems biology

Anmerkungen:

Date Completed 19.07.2023

Date Revised 03.01.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1111/acel.13852

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM356050300