Evidence for heterothermic endothermy and reptile-like eggshell mineralization in Troodon, a non-avian maniraptoran theropod

The dinosaur-bird transition involved several anatomical, biomechanical, and physiological modifications of the theropod bauplan. Non-avian maniraptoran theropods, such as Troodon, are key to better understand changes in thermophysiology and reproduction occurring during this transition. Here, we applied dual clumped isotope (Δ47 and Δ48) thermometry, a technique that resolves mineralization temperature and other nonthermal information recorded in carbonates, to eggshells from Troodon, modern reptiles, and modern birds. Troodon eggshells show variable temperatures, namely 42 and 29 ± 2 °C, supporting the hypothesis of an endothermic thermophysiology with a heterothermic strategy for this extinct taxon. Dual clumped isotope data also reveal physiological differences in the reproductive systems between Troodon, reptiles, and birds. Troodon and modern reptiles mineralize their eggshells indistinguishable from dual clumped isotope equilibrium, while birds precipitate eggshells characterized by a positive disequilibrium offset in Δ48. Analyses of inorganic calcites suggest that the observed disequilibrium pattern in birds is linked to an amorphous calcium carbonate (ACC) precursor, a carbonate phase known to accelerate eggshell formation in birds. Lack of disequilibrium patterns in reptile and Troodon eggshells implies these vertebrates had not acquired the fast, ACC-based eggshell calcification process characteristic of birds. Observation that Troodon retained a slow reptile-like calcification suggests that it possessed two functional ovaries and was limited in the number of eggs it could produce; thus its large clutches would have been laid by several females. Dual clumped isotope analysis of eggshells of extinct vertebrates sheds light on physiological information otherwise inaccessible in the fossil record.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:120

Enthalten in:

Proceedings of the National Academy of Sciences of the United States of America - 120(2023), 15 vom: 11. Apr., Seite e2213987120

Sprache:

Englisch

Beteiligte Personen:

Tagliavento, Mattia [VerfasserIn]
Davies, Amelia J [VerfasserIn]
Bernecker, Miguel [VerfasserIn]
Staudigel, Philip T [VerfasserIn]
Dawson, Robin R [VerfasserIn]
Dietzel, Martin [VerfasserIn]
Götschl, Katja [VerfasserIn]
Guo, Weifu [VerfasserIn]
Schulp, Anne S [VerfasserIn]
Therrien, François [VerfasserIn]
Zelenitsky, Darla K [VerfasserIn]
Gerdes, Axel [VerfasserIn]
Müller, Wolfgang [VerfasserIn]
Fiebig, Jens [VerfasserIn]

Links:

Volltext

Themen:

Amorphous calcium carbonate
Calcium Carbonate
Dinosaur–bird transition
Dual clumped isotope thermometry
Eggshell mineralization
H0G9379FGK
Isotopes
Journal Article
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 05.04.2023

Date Revised 04.10.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1073/pnas.2213987120

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM355159910