Bioinspired Antimicrobial PLA with Nanocones on the Surface for Rapid Deactivation of Omicron SARS-CoV-2

Bioinspired bactericidal surfaces are artificial surfaces that mimic the nanotopography of insect wings and are capable of inhibiting microbial growth by a physicomechanical mechanism. The scientific community has considered them an alternative method to design polymers with surfaces that inhibit bacterial biofilm formation, suitable for self-disinfectant medical devices. In this contribution, poly(lactic acid) (PLA) with nanocone patterns was successfully produced by a novel two-step procedure involving copper plasma deposition followed by argon plasma etching. According to reverse transcription-quantitative polymerase chain reaction tests, the bioinspired PLA nanostructures display antiviral performance to inactivate infectious Omicron severe acute respiratory syndrome coronavirus 2 particles, reducing the amount of the viral genome to less than 4% in just 15 min due to a possible combined effect of mechanical and oxidative stress. The bioinspired antiviral PLA can be suitable for designing personal protection equipment to prevent the transmission of contagious viral diseases, such as Coronavirus Disease 2019.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:9

Enthalten in:

ACS biomaterials science & engineering - 9(2023), 4 vom: 10. Apr., Seite 1891-1899

Sprache:

Englisch

Beteiligte Personen:

da Silva, Daniel J [VerfasserIn]
Duran, Adriana [VerfasserIn]
Cabral, Aline D [VerfasserIn]
Fonseca, Fernando L A [VerfasserIn]
Wang, Shu Hui [VerfasserIn]
Parra, Duclerc F [VerfasserIn]
Bueno, Rodrigo F [VerfasserIn]
Pereyra, Inés [VerfasserIn]
Rosa, Derval S [VerfasserIn]

Links:

Volltext

Themen:

Anti-Bacterial Agents
Antiviral Agents
Copper
Journal Article
Nanotopography
Poly(lactic acid)
Polyesters
Research Support, Non-U.S. Gov't
SARS-CoV-2
Surface

Anmerkungen:

Date Completed 11.04.2023

Date Revised 29.08.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1021/acsbiomaterials.2c01529

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM353876135