All-Optical Reconfigurable Excitonic Charge States in Monolayer MoS2

Excitons are quasi-particles composed of electron-hole pairs through Coulomb interaction. Due to the atomic-thin thickness, they are tightly bound in monolayer transition metal dichalcogenides (TMDs) and dominate their optical properties. The capability to manipulate the excitonic behavior can significantly influence the photon emission or carrier transport performance of TMD-based devices. However, on-demand and region-selective manipulation of the excitonic states in a reversible manner remains challenging so far. Herein, harnessing the coordinated effect of femtosecond-laser-driven atomic defect generation, interfacial electron transfer, and surface molecular desorption/adsorption, we develop an all-optical approach to manipulate the charge states of excitons in monolayer molybdenum disulfide (MoS2). Through steering the laser beam, we demonstrate reconfigurable optical encoding of the excitonic charge states (between neutral and negative states) on a single MoS2 flake. Our technique can be extended to other TMDs materials, which will guide the design of all-optical and reconfigurable TMD-based optoelectronic and nanophotonic devices.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:23

Enthalten in:

Nano letters - 23(2023), 4 vom: 22. Feb., Seite 1514-1521

Sprache:

Englisch

Beteiligte Personen:

Huang, Guan-Yao [VerfasserIn]
Lin, Linhan [VerfasserIn]
Zhao, Shuang [VerfasserIn]
Li, Wenbin [VerfasserIn]
Deng, Xiaonan [VerfasserIn]
Zhang, Simian [VerfasserIn]
Wang, Chen [VerfasserIn]
Li, Xiao-Ze [VerfasserIn]
Zhang, Yan [VerfasserIn]
Fang, Hong-Hua [VerfasserIn]
Zou, Yixuan [VerfasserIn]
Li, Peng [VerfasserIn]
Bai, Benfeng [VerfasserIn]
Sun, Hong-Bo [VerfasserIn]
Fu, Tairan [VerfasserIn]

Links:

Volltext

Themen:

Charge state
Exciton
Femtosecond laser
Journal Article
Transition metal dichalcogenides
Trion

Anmerkungen:

Date Completed 17.04.2023

Date Revised 17.04.2023

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1021/acs.nanolett.2c04850

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM352403624