On the implementation of a new version of the Weibull distribution and machine learning approach to model the COVID-19 data

Statistical methodologies have broader applications in almost every sector of life including education, hydrology, reliability, management, and healthcare sciences. Among these sectors, statistical modeling and predicting data in the healthcare sector is very crucial. In this paper, we introduce a new method, namely, a new extended exponential family to update the distributional flexibility of the existing models. Based on this approach, a new version of the Weibull model, namely, a new extended exponential Weibull model is introduced. The applicability of the new extended exponential Weibull model is shown by considering two data sets taken from the health sciences. The first data set represents the mortality rate of the patients infected by the coronavirus disease 2019 (COVID-19) in Mexico. Whereas, the second set represents the mortality rate of COVID-19 patients in Holland. Utilizing the same data sets, we carry out forecasting using three machine learning (ML) methods including support vector regression (SVR), random forest (RF), and neural network autoregression (NNAR). To assess their forecasting performances, two statistical accuracy measures, namely, root mean square error (RMSE) and mean absolute error (MAE) are considered. Based on our findings, it is observed that the RF algorithm is very effective in predicting the death rate of the COVID-19 data in Mexico. Whereas, for the second data, the SVR performs better as compared to the other methods.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:20

Enthalten in:

Mathematical biosciences and engineering : MBE - 20(2023), 1 vom: 17. Jan., Seite 337-364

Sprache:

Englisch

Beteiligte Personen:

Zhou, Yinghui [VerfasserIn]
Ahmad, Zubair [VerfasserIn]
Almaspoor, Zahra [VerfasserIn]
Khan, Faridoon [VerfasserIn]
Tag-Eldin, Elsayed [VerfasserIn]
Iqbal, Zahoor [VerfasserIn]
El-Morshedy, Mahmoud [VerfasserIn]

Links:

Volltext

Themen:

Family of distributions
Healthcare sector
Journal Article
Machine learning algorithms
Mathematical properties
Simulation
Statistical modeling

Anmerkungen:

Date Completed 19.01.2023

Date Revised 17.02.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.3934/mbe.2023016

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM35161575X