Performance of Reinforced Foam and Geopolymer Concretes against Prolonged Exposures to Chloride in a Normal Environment

The utilization of sustainable cement replacement materials in concrete can control the emission of carbon dioxide and greenhouse gases in the construction industry, thus contributing significantly to the environment, society, and the global economy. Various types of sustainable concrete including geopolymer concrete are tested for their efficacy for construction in laboratories. However, the performance and longevity of sustainable concrete for civil engineering applications in corrosive environments are still debatable. This paper aims to investigate the performance of the reinforced geopolymer (GPC) and foam concretes (FC) against corrosive chloride exposure. Two long term key parameters, i.e., corrosion rate and mechanical performance of reinforcing steel in geopolymer and foam concrete were assessed to evaluate their performance against chloride attack. For experiments, reinforced GPC and FC specimens, each admixed with 3 and 5% chlorides, were kept at varying temperatures and humidity levels in the environmental chambers. The corrosion rates of the reinforced geopolymer and foam concrete specimens were also compared with control specimens after 803 days and the tensile strength of the corroded reinforcing steel was also determined. Moreover, the long term efficacy of repaired patches (810 days), in a chloride-rich surrounding environment utilizing FC and GPC, was investigated. The results suggested greater performance of FC compared to GPC under standard environmental conditions. However, the simulated patch repair with GPC showed better resistance against chloride attack compared to FC. The research also undertook the fractographical examination of the surfaces of the reinforcement exposed to 5% admixed chloride and develops models for the corrosion rates of foam concrete as a function of the corrosion rates of geopolymer concrete and chloride content. A correlation model for the corrosion rates of FC and GPC was also developed. The findings of the current research and the model developed are novel and contribute to the knowledge of long term degradation science of geopolymers and form concrete materials. Furthermore, the findings and methodology of the current research have practical significance in the construction and repair industry for determining the remaining service life for any reinforced and steel infrastructure.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:16

Enthalten in:

Materials (Basel, Switzerland) - 16(2022), 1 vom: 23. Dez.

Sprache:

Englisch

Beteiligte Personen:

Wasim, Muhammad [VerfasserIn]
Roychand, Rajeev [VerfasserIn]
Barnes, Rhys Thomas [VerfasserIn]
Talevski, Jason [VerfasserIn]
Law, David [VerfasserIn]
Li, Jie [VerfasserIn]
Saberian, Mohammad [VerfasserIn]

Links:

Volltext

Themen:

Chloride
Corrosion
Foam concrete
Fractography
Geopolymer concrete
Journal Article
Patch repairs
Reinforcement
Tensile strength

Anmerkungen:

Date Revised 11.01.2023

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.3390/ma16010149

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM35125580X