Nascent Nanoformulations as an Insight into the Limitations of the Conventional Systemic Antifungal Therapies

Copyright© Bentham Science Publishers; For any queries, please email at epubbenthamscience.net..

More than 150 million people have significant fungal diseases that greatly impact health care and economic expenditures. The expansion of systemic fungal infections and invasive mycoses is being driven by an increase in the number of immunocompromised patients and the recent COVID-19 patients, especially severely ill. There have been numerous cases of fungal infections linked to COVID-19, with pulmonary aspergillosis dominating at first but with the subsequent appearance of mucormycosis, candidiasis, and endemic mycoses. Candida spp. is the most frequent pathogen, with approximately 1 billion infections yearly, among other species causing the most prevalent invasive fungal infections. The importance of recognizing the epidemiological shifts of invasive fungal infections in patient care cannot be overstated. Despite the enormous antifungal therapies available, these infections are difficult to diagnose and cause high morbidity and mortality rates. Treatment choices for systemic fungal infections are severely limited due to the limitations of conventional therapy effectiveness and drug toxicities. So the researchers are still looking for novel therapeutic options, such as carrier-based approaches that are convenient and cost-effective with high and long-lasting fungal infection cure rates with reduced toxicities. The focus of this study is on summarizing the nanotechnology, immunotherapy methods and the drugs under clinical trials that have been employed in treatment as carrier-based antifungal formulations. Most of these have been reported to be promising strategies with broad-spectrum antifungal action and the potential to overcome antibiotic resistance mechanisms. We speculate that this review summarized the current knowledge to its best that will help the future developments of new antifungal therapies.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:24

Enthalten in:

Current drug targets - 24(2023), 2 vom: 28., Seite 171-190

Sprache:

Englisch

Beteiligte Personen:

Kaur, Manjot [VerfasserIn]
Shivgotra, Riya [VerfasserIn]
Bhardwaj, Nitish [VerfasserIn]
Saini, Shagun [VerfasserIn]
Thakur, Shubham [VerfasserIn]
Jain, Subheet Kumar [VerfasserIn]

Links:

Volltext

Themen:

Antifungal Agents
Antifungal therapies
Carrier-based approaches
Immunocompromised
Infections
Journal Article
Nanotechnology
Research Support, Non-U.S. Gov't
Review
Systemic fungal

Anmerkungen:

Date Completed 16.03.2023

Date Revised 21.03.2023

published: Print

Citation Status MEDLINE

doi:

10.2174/1389450124666221128122836

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM349568243