Sleep Staging Framework with Physiologically Harmonized Sub-Networks

Copyright © 2022 Elsevier Inc. All rights reserved..

Sleep screening is an important tool for both healthcare and neuroscientific research. Automatic sleep scoring is an alternative to the time-consuming gold-standard manual scoring procedure. Recently there have seen promising results on automatic stage scoring by extracting spatio-temporal features via deep neural networks from electroencephalogram (EEG). However, such methods fail to consistently yield good performance due to a missing piece in data representation: the medical criterion of the sleep scoring task on top of EEG features. We argue that capturing stage-specific features that satisfy the criterion of sleep medicine is non-trivial for automatic sleep scoring. This paper considers two criteria: Transient stage marker and Overall profile of EEG features, then we propose a physiologically meaningful framework for sleep stage scoring via mixed deep neural networks. The framework consists of two sub-networks: feature extraction networks, constructed in consideration of the physiological characteristics of sleep, and an attention-based scoring decision network. Moreover, we quantize the framework for potential use under an IoT setting. For proof-of-concept, the performance of the proposed framework is demonstrated by introducing multiple sleep datasets with the largest comprising 42,560 h recorded from 5,793 subjects. From the experiment results, the proposed method achieves a competitive stage scoring performance, especially for Wake, N2, and N3, with higher F1 scores of 0.92, 0.86, and 0.88, respectively. Moreover, the feasibility analysis of framework quantization provides a potential for future implementation in the edge computing field and clinical settings.

Medienart:

E-Artikel

Erscheinungsjahr:

2023

Erschienen:

2023

Enthalten in:

Zur Gesamtaufnahme - volume:209

Enthalten in:

Methods (San Diego, Calif.) - 209(2023) vom: 01. Jan., Seite 18-28

Sprache:

Englisch

Beteiligte Personen:

Chen, Zheng [VerfasserIn]
Yang, Ziwei [VerfasserIn]
Wang, Dong [VerfasserIn]
Zhu, Xin [VerfasserIn]
Ono, Naoaki [VerfasserIn]
Altaf-Ul-Amin, M D [VerfasserIn]
Kanaya, Shigehiko [VerfasserIn]
Huang, Ming [VerfasserIn]

Links:

Volltext

Themen:

EEG
Half-precision training
Journal Article
Mixed neural network
Research Support, Non-U.S. Gov't
Sleep stage scoring

Anmerkungen:

Date Completed 12.01.2023

Date Revised 02.02.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.ymeth.2022.11.003

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM349496668