A sensitive and rapid determination of zinc ion (Zn2+) using electrochemical sensor based on f-MWCNTs/CS/PB/AuE in drinking water

© 2022. The Author(s)..

An electrochemical method for detecting the presence of zinc (Zn2+) ions in drinking water was developed using functionalized multi-walled carbon nanotubes (f-MWCNTs) and chitosan (CS). Numerous cylinder-shaped graphene molecules make up f-MWCNTs, which have a high mechanical and electrical conductivity. CS benefits from nanomaterials include biocompatibility, biodegradability, and low toxicity, which are excellent in capacity absorption of metal ions. Dangerous levels of metal ions such as zinc are currently present in drinking water as a result of human and natural activity. Zinc toxicity is associated with a variety of disorders, including Alzheimer's, Parkinson's, diabetes, and cancer. This study incorporated f-MWCNTs and CS with Prussian blue (PB) immobilised on a gold electrode (AuE). Several parameters, including as buffers, pH, scan rate, redox indicator, accumulation time, and volume, were optimised using the cyclic voltammetry (CV) method. According to the CV method, the optimal parameters were phosphate buffered saline (0.1 M, pH 2), 5 mM Prussian blue, 200 mVs-1 scan rate, and 5 s accumulation time. Under ideal circumstances, the differential pulse voltammetry (DPV) method was used to determine the Zn2+ ions concentration range of 0.2-7.0 ppm. The limit of detection (LOD) was 2.60 × 10-7 mol L-1 with a correlation coefficient of R2 = 0.9777. The recovery rate of the developed sensor (f-MWCNTs/CS/PB/AuE) ranged from 95.78 to 98.96%. The developed sensor showed a variety of advantages for detecting Zn2+ in drinking water, including a quick setup process, quick detection, high sensitivity, and mobility. This study developed the essential sensor for monitoring Zn2+ levels in drinking water in the future.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:12

Enthalten in:

Scientific reports - 12(2022), 1 vom: 03. Nov., Seite 18582

Sprache:

Englisch

Beteiligte Personen:

Ringgit, Gilbert [VerfasserIn]
Siddiquee, Shafiquzzaman [VerfasserIn]
Saallah, Suryani [VerfasserIn]
Mohamad Lal, Mohammad Tamrin [VerfasserIn]

Links:

Volltext

Themen:

9012-76-4
Chitosan
Drinking Water
Ferric ferrocyanide
Ions
J41CSQ7QDS
Journal Article
Nanotubes, Carbon
Research Support, Non-U.S. Gov't
TLE294X33A
Zinc

Anmerkungen:

Date Completed 07.11.2022

Date Revised 04.01.2023

published: Electronic

Citation Status MEDLINE

doi:

10.1038/s41598-022-21926-6

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM348430183