Computational design and characterization of a multiepitope vaccine against carbapenemase-producing Klebsiella pneumoniae strains, derived from antigens identified through reverse vaccinology

© 2022 The Author(s)..

Klebsiella pneumoniae is a Gram-negative pathogen of clinical relevance, which can provoke serious urinary and blood infections and pneumonia. This bacterium is a major public health threat due to its resistance to several antibiotic classes. Using a reverse vaccinology approach, 7 potential antigens were identified, of which 4 were present in most of the sequences of Italian carbapenem-resistant K. pneumoniae clinical isolates. Bioinformatics tools demonstrated the antigenic potential of these bacterial proteins and allowed for the identification of T and B cell epitopes. This led to a rational design and in silico characterization of a multiepitope vaccine against carbapenem-resistant K. pneumoniae strains. As adjuvant, the mycobacterial heparin-binding hemagglutinin adhesin (HBHA), which is a Toll-like receptor 4 (TLR-4) agonist, was included, to increase the immunogenicity of the construct. The multiepitope vaccine candidate was analyzed by bioinformatics tools to assess its antigenicity, solubility, allergenicity, toxicity, physical and chemical parameters, and secondary and tertiary structures. Molecular docking binding energies to TLR-2 and TLR-4, two important innate immunity receptors involved in the immune response against K. pneumoniae infections, and molecular dynamics simulations of such complexes supported active interactions. A codon optimized multiepitope sequence cloning strategy is proposed, for production of recombinant vaccine in classical bacterial vectors. Finally, a 3 dose-immunization simulation with the multiepitope construct induced both cellular and humoral immune responses. These results suggest that this multiepitope construct has potential as a vaccination strategy against carbapenem-resistant K. pneumoniae and deserves further validation.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:20

Enthalten in:

Computational and structural biotechnology journal - 20(2022) vom: 13., Seite 4446-4463

Sprache:

Englisch

Beteiligte Personen:

Cuscino, Nicola [VerfasserIn]
Fatima, Ayesha [VerfasserIn]
Di Pilato, Vincenzo [VerfasserIn]
Bulati, Matteo [VerfasserIn]
Alfano, Caterina [VerfasserIn]
Monaca, Elisa [VerfasserIn]
Di Mento, Giuseppina [VerfasserIn]
Di Carlo, Daniele [VerfasserIn]
Cardinale, Francesca [VerfasserIn]
Monaco, Francesco [VerfasserIn]
Rossolini, Gian Maria [VerfasserIn]
Khan, Asif M [VerfasserIn]
Conaldi, Pier Giulio [VerfasserIn]
Douradinha, Bruno [VerfasserIn]

Links:

Volltext

Themen:

Antimicrobial resistance
Bioinformatics
Carbapenems
Journal Article
Klebsiella pneumoniae
Reverse vaccinology
Subunit vaccine

Anmerkungen:

Date Revised 07.09.2022

published: Electronic-eCollection

Citation Status PubMed-not-MEDLINE

doi:

10.1016/j.csbj.2022.08.035

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM345691393