Towards a validated definition of the clinical transition to secondary progressive multiple sclerosis : A study from the Italian MS Register

BACKGROUND: Definitions for reliable identification of transition from relapsing-remitting multiple sclerosis (MS) to secondary progressive (SP)MS in clinical cohorts are not available.

OBJECTIVES: To compare diagnostic performances of two different data-driven SPMS definitions.

METHODS: Data-driven SPMS definitions based on a version of Lorscheider's algorithm (DDA) and on the EXPAND trial inclusion criteria were compared, using the neurologist's definition (ND) as gold standard, in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), Akaike information criterion (AIC) and area under the curve (AUC).

RESULTS: A cohort of 10,240 MS patients with ⩾5 years of follow-up was extracted from the Italian MS Registry; 880 (8.5%) patients were classified as SPMS according to the neurologist definition, 1806 (17.6%) applying the DDA and 1134 (11.0%) with the EXPAND definition. The DDA showed greater discrimination power (AUC: 0.8 vs 0.6) and a higher sensitivity (77.1% vs 38.0%) than the EXPAND definition, with similar specificity (88.0% vs 91.5%). PPV and NPV were higher using the DDA than considering EXPAND definition (37.5% vs 29.5%; 97.6% vs 94.0%).

CONCLUSION: Data-driven definitions demonstrated greater ability to capture SP transition than neurologist's definition and the global accuracy of DDA seems to be higher than the EXPAND definition.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:28

Enthalten in:

Multiple sclerosis (Houndmills, Basingstoke, England) - 28(2022), 14 vom: 15. Dez., Seite 2243-2252

Sprache:

Englisch

Beteiligte Personen:

Iaffaldano, Pietro [VerfasserIn]
Lucisano, Giuseppe [VerfasserIn]
Guerra, Tommaso [VerfasserIn]
Patti, Francesco [VerfasserIn]
Onofrj, Marco [VerfasserIn]
Brescia Morra, Vincenzo [VerfasserIn]
Zaffaroni, Mauro [VerfasserIn]
Pozzilli, Carlo [VerfasserIn]
Cocco, Eleonora [VerfasserIn]
Sola, Patrizia [VerfasserIn]
Salemi, Giuseppe [VerfasserIn]
Inglese, Matilde [VerfasserIn]
Bergamaschi, Roberto [VerfasserIn]
Gasperini, Claudio [VerfasserIn]
Conte, Antonella [VerfasserIn]
Salvetti, Marco [VerfasserIn]
Lus, Giacomo [VerfasserIn]
Maniscalco, Giorgia Teresa [VerfasserIn]
Totaro, Rocco [VerfasserIn]
Vianello, Marika [VerfasserIn]
Granella, Franco [VerfasserIn]
Ferraro, Elisabetta [VerfasserIn]
Aguglia, Umberto [VerfasserIn]
Gatto, Maurizia [VerfasserIn]
Sangalli, Francesca [VerfasserIn]
Chisari, Clara Grazia [VerfasserIn]
De Luca, Giovanna [VerfasserIn]
Carotenuto, Antonio [VerfasserIn]
Baroncini, Damiano [VerfasserIn]
Colombo, Delia [VerfasserIn]
Nica, Mihaela [VerfasserIn]
Paolicelli, Damiano [VerfasserIn]
Comi, Giancarlo [VerfasserIn]
Filippi, Massimo [VerfasserIn]
Amato, Maria Pia [VerfasserIn]
Trojano, Maria [VerfasserIn]

Links:

Volltext

Themen:

Big data
Data-driven algorithm
Disease registry
Journal Article
Multiple sclerosis
Prognosis
Research Support, Non-U.S. Gov't
Secondary progressive

Anmerkungen:

Date Completed 30.03.2023

Date Revised 30.03.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1177/13524585221114007

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM344900185