SARS-CoV-2-Induced Immunosuppression : A Molecular Mimicry Syndrome

The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. ( https://creativecommons.org/licenses/by/4.0/ )..

Background  Contrary to immunological expectations, decay of adaptive responses against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) characterizes recovered patients compared with patients who had a severe disease course or died following SARS-CoV-2 infection. This raises the question of the causes of the virus-induced immune immunosuppression. Searching for molecular link(s) between SARS-CoV-2 immunization and the decay of the adaptive immune responses, SARS-CoV-2 proteome was analyzed for molecular mimicry with human proteins related to immunodeficiency. The aim was to verify the possibility of cross-reactions capable of destroying the adaptive immune response triggered by SARS-CoV-2. Materials and Methods  Human immunodeficiency-related proteins were collected from UniProt database and analyzed for sharing of minimal immune determinants with the SARS-CoV-2 proteome. Results  Molecular mimicry and consequent potential cross-reactivity exist between SARS-CoV-2 proteome and human immunoregulatory proteins such as nuclear factor kappa B (NFKB), and variable diversity joining V(D)J recombination-activating gene (RAG). Conclusion  The data (1) support molecular mimicry and the associated potential cross-reactivity as a mechanism that can underlie self-reactivity against proteins involved in B- and T-cells activation/development, and (2) suggest that the extent of the immunosuppression is dictated by the extent of the immune responses themselves. The higher the titer of the immune responses triggered by SARS-CoV-2 immunization, the more severe can be the cross-reactions against the human immunodeficiency-related proteins, the more severe the immunosuppression. Hence, SARS-CoV-2-induced immunosuppression can be defined as a molecular mimicry syndrome. Clinically, the data imply that booster doses of SARS-CoV-2 vaccines may have opposite results to those expected.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:9

Enthalten in:

Global medical genetics - 9(2022), 3 vom: 11. Sept., Seite 191-199

Sprache:

Englisch

Beteiligte Personen:

Kanduc, Darja [VerfasserIn]

Links:

Volltext

Themen:

Cross-reactivity
Immunosuppression
Journal Article
Molecular mimicry
NFKB
SARS-CoV-2
V(D)J RAG proteins

Anmerkungen:

Date Revised 19.07.2022

published: Electronic-eCollection

Citation Status PubMed-not-MEDLINE

doi:

10.1055/s-0042-1748170

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM343663244