Voluntary Motor Command Release Coincides with Restricted Sensorimotor Beta Rhythm Phases

Copyright © 2022 the authors..

Sensory perception and memory are enhanced during restricted phases of ongoing brain rhythms, but whether voluntary movement is constrained by brain rhythm phase is not known. Voluntary movement requires motor commands to be released from motor cortex (M1) and transmitted to spinal motoneurons and effector muscles. Here, we tested the hypothesis that motor commands are preferentially released from M1 during circumscribed phases of ongoing sensorimotor rhythms. Healthy humans of both sexes performed a self-paced finger movement task during electroencephalography (EEG) and electromyography (EMG) recordings. We first estimated the time of motor command release preceding each finger movement by subtracting individually measured corticomuscular transmission latencies from EMG-determined movement onset times. Then, we determined the phase of ipsilateral and contralateral sensorimotor mu (8-12 Hz) and beta (13-35 Hz) rhythms during release of each motor command. We report that motor commands were most often released between 120 and 140° along the contralateral beta cycle but were released uniformly along the contralateral mu cycle. Motor commands were also released uniformly along ipsilateral mu and beta cycles. Results demonstrate that motor command release coincides with restricted phases of the contralateral sensorimotor beta rhythm, suggesting that sensorimotor beta rhythm phase may sculpt the timing of voluntary human movement.SIGNIFICANCE STATEMENT Perceptual and cognitive function is optimal during specific brain rhythm phases. Although brain rhythm phase influences motor cortical neuronal activity and communication between the motor cortex and spinal cord, its role in voluntary movement is poorly understood. Here, we show that the motor commands needed to produce voluntary movements are preferentially released from the motor cortex during contralateral sensorimotor beta rhythm phases. Our findings are consistent with the notion that sensorimotor rhythm phase influences the timing of voluntary human movement.

Errataetall:

CommentIn: J Neurosci. 2023 Feb 8;43(6):882-884. - PMID 36754638

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:42

Enthalten in:

The Journal of neuroscience : the official journal of the Society for Neuroscience - 42(2022), 29 vom: 20. Juli, Seite 5771-5781

Sprache:

Englisch

Beteiligte Personen:

Hussain, Sara J [VerfasserIn]
Vollmer, Mary K [VerfasserIn]
Iturrate, Iñaki [VerfasserIn]
Quentin, Romain [VerfasserIn]

Links:

Volltext

Themen:

Electroencephalography
Journal Article
Motor
Movement
Oscillations
Research Support, N.I.H., Intramural
Sensorimotor rhythms

Anmerkungen:

Date Completed 22.07.2022

Date Revised 01.04.2024

published: Print-Electronic

CommentIn: J Neurosci. 2023 Feb 8;43(6):882-884. - PMID 36754638

Citation Status MEDLINE

doi:

10.1523/JNEUROSCI.1495-21.2022

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM342226452