Interindividual variation in maximum aerobic metabolism varies with gill morphology and myocardial bioenergetics in Gulf killifish

© 2022. Published by The Company of Biologists Ltd..

This study asked whether interindividual variation in maximum and standard aerobic metabolic rates of the Gulf killifish, Fundulus grandis, correlates with gill morphology and cardiac mitochondrial bioenergetics, traits reflecting critical steps in the O2 transport cascade from the environment to the tissues. Maximum metabolic rate (MMR) was positively related to body mass, total gill filament length and myocardial oxygen consumption during maximum oxidative phosphorylation (multiple R2=0.836). Standard metabolic rate (SMR) was positively related to body mass, total gill filament length and myocardial oxygen consumption during maximum electron transport system activity (multiple R2=0.717). After controlling for body mass, individuals with longer gill filaments, summed over all gill arches, or greater cardiac respiratory capacity had higher whole-animal metabolic rates. The overall model fit and the explanatory power of individual predictor variables were better for MMR than for SMR, suggesting that gill morphology and myocardial bioenergetics are more important in determining active rather than resting metabolism. After accounting for body mass, heart ventricle mass was not related to variation in MMR or SMR, indicating that the quality of the heart (i.e. the capacity for mitochondrial metabolism) was more influential than heart size. Finally, the myocardial oxygen consumption required to offset the dissipation of the transmembrane proton gradient in the absence of ATP synthesis was not correlated with either MMR or SMR. The results support the idea that interindividual variation in aerobic metabolism, particularly MMR, is associated with variation in specific steps in the O2 transport cascade.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:225

Enthalten in:

The Journal of experimental biology - 225(2022), 12 vom: 15. Juni

Sprache:

Englisch

Beteiligte Personen:

Rees, Bernard B [VerfasserIn]
Reemeyer, Jessica E [VerfasserIn]
Irving, Brian A [VerfasserIn]

Links:

Volltext

Themen:

Fundulus
Gill morphology
Heart
Journal Article
Metabolic rate
Mitochondria
Oxygen transport cascade

Anmerkungen:

Date Completed 23.06.2022

Date Revised 20.07.2022

published: Print-Electronic

Dryad: 10.5061/dryad.jsxksn0bx

Citation Status MEDLINE

doi:

10.1242/jeb.243680

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM341956880