DEEMD : Drug Efficacy Estimation Against SARS-CoV-2 Based on Cell Morphology With Deep Multiple Instance Learning

Drug repurposing can accelerate the identification of effective compounds for clinical use against SARS-CoV-2, with the advantage of pre-existing clinical safety data and an established supply chain. RNA viruses such as SARS-CoV-2 manipulate cellular pathways and induce reorganization of subcellular structures to support their life cycle. These morphological changes can be quantified using bioimaging techniques. In this work, we developed DEEMD: a computational pipeline using deep neural network models within a multiple instance learning framework, to identify putative treatments effective against SARS-CoV-2 based on morphological analysis of the publicly available RxRx19a dataset. This dataset consists of fluorescence microscopy images of SARS-CoV-2 non-infected cells and infected cells, with and without drug treatment. DEEMD first extracts discriminative morphological features to generate cell morphological profiles from the non-infected and infected cells. These morphological profiles are then used in a statistical model to estimate the applied treatment efficacy on infected cells based on similarities to non-infected cells. DEEMD is capable of localizing infected cells via weak supervision without any expensive pixel-level annotations. DEEMD identifies known SARS-CoV-2 inhibitors, such as Remdesivir and Aloxistatin, supporting the validity of our approach. DEEMD can be explored for use on other emerging viruses and datasets to rapidly identify candidate antiviral treatments in the future. Our implementation is available online at https://www.github.com/Sadegh-Saberian/DEEMD.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:41

Enthalten in:

IEEE transactions on medical imaging - 41(2022), 11 vom: 27. Nov., Seite 3128-3145

Sprache:

Englisch

Beteiligte Personen:

Saberian, M Sadegh [VerfasserIn]
Moriarty, Kathleen P [VerfasserIn]
Olmstead, Andrea D [VerfasserIn]
Hallgrimson, Christian [VerfasserIn]
Jean, Francois [VerfasserIn]
Nabi, Ivan R [VerfasserIn]
Libbrecht, Maxwell W [VerfasserIn]
Hamarneh, Ghassan [VerfasserIn]

Links:

Volltext

Themen:

Antiviral Agents
Journal Article
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 31.10.2022

Date Revised 30.11.2022

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1109/TMI.2022.3178523

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM341451134