Titania/chitosan-lignin nanocomposite as an efficient photocatalyst for the selective oxidation of benzyl alcohol under UV and visible light

This journal is © The Royal Society of Chemistry..

Developing functional materials from biomass is a significant research subject due to its unique structure, abundant availability, biodegradability and low cost. A series of chitosan-lignin (CL) composites were prepared through a hydrothermal method by varying the weight ratio of chitosan and lignin. Subsequently, these CL composites were combined with titania (T) to form a nanocomposite (T/CL) using sol-gel and hydrothermal based methods. T/CL nanocomposites exhibited improved photocatalytic performance in comparison with sol-gel and hydrothermally prepared pristine titania (SGH-TiO2), towards the selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (Bnald) under UV (375 nm) and visible light (515 nm). More specifically, the 75T/CL(25 : 75) nanocomposite (a representative photocatalyst from the 75T/CL nanocomposite series) showed very high selectivity (94%) towards Bnald at 55% BnOH conversion under UV light. Whereas, SGH-TiO2 titania exhibited much lower (68%) selectivity for Bnald at similar BnOH conversion. Moreover, the 75T/CL(25 : 75) nanocomposite also showed excellent Bnald selectivity (100%) at moderate BnOH conversion (19%) under visible light. Whereas, SGH-TiO2 did not show any activity for BnOH oxidation under visible light. XPS studies suggest that the visible light activity of the 75T/CL(25 : 75) nanocomposite is possibly related to the doping of nitrogen into titania from chitosan. However, according to UV-visible-DRS results, no direct evidence pertaining to the decrease in band-gap energy of titania was found upon coupling with the CL composite and the visible light activity was attributed to N-doping of titania. Overall, it was found that T/CL nanocomposites enhanced the photocatalytic performance of titania via improved light harvesting and higher selectivity through mediation of active radical species.

Errataetall:

ErratumIn: RSC Adv. 2022 Feb 9;12(8):4972. - PMID 35427085

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:11

Enthalten in:

RSC advances - 11(2021), 55 vom: 25. Okt., Seite 34996-35010

Sprache:

Englisch

Beteiligte Personen:

Khan, Ayesha [VerfasserIn]
Goepel, Michael [VerfasserIn]
Lisowski, Wojciech [VerfasserIn]
Łomot, Dariusz [VerfasserIn]
Lisovytskiy, Dmytro [VerfasserIn]
Mazurkiewicz-Pawlicka, Marta [VerfasserIn]
Gläser, Roger [VerfasserIn]
Colmenares, Juan Carlos [VerfasserIn]

Links:

Volltext

Themen:

Journal Article

Anmerkungen:

Date Revised 20.06.2023

published: Electronic-eCollection

ErratumIn: RSC Adv. 2022 Feb 9;12(8):4972. - PMID 35427085

Citation Status PubMed-not-MEDLINE

doi:

10.1039/d1ra06500a

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM340235136