Enduring Reactive Oxygen Species Emission Causes Aberrant Protein S-Glutathionylation Transitioning Human Aortic Valve Cells from a Sclerotic to a Stenotic Phenotype

Aims: During calcific aortic valve stenosis (CAVS) progression, oxidative stress and endothelial dysfunction mark the initial pathogenic steps with a parallel dysregulation of the antioxidant systems. Here, we tested whether oxidation-induced protein S-glutathionylation (P-SSG) accounts for a phenotypic switch in human aortic valvular tissue, eventually leading to calcium deposition. Next, we tested whether countering this reactive oxygen species (ROS) surge would prevent these perturbations. Results: We employed state-of-the-art technologies, such as electron paramagnetic resonance (EPR), liquid chromatography-tandem mass spectrometry, imaging flow-cytometry, and live-cell imaging on human excised aortic valves and primary valve endothelial cells (VECs). We observed that a net rise in EPR-detected ROS emission marked the transition from fibrotic to calcific in human CAVS specimens, coupled to a progressive increment in P-SSG deposition. In human VECs (hVECs), treatment with 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid triggered highly oxidizing conditions prompting P-SSG accumulation, damaging mitochondria, and inducing endothelial nitric oxide synthase uncoupling. All the events conjured up in morphing these cells from their native endothelial phenotype into a damaged calcification-inducing one. As proof of principle, the use of the antioxidant N-acetyl-L-cysteine prevented these alterations. Innovation: Borne as a compensatory system to face excessive oxidative burden, with time, P-SSG contributes to the morphing of hVECs from their innate phenotype into a damaged one, paving the way to calcium deposition. Conclusion: Our data suggest that, in the human aortic valve, unremitted ROS emission along with a P-SSG build-up occurs and accounts, at least in part, for the morphological/functional changes leading to CAVS. Antioxid. Redox Signal. 37, 1051-1071.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:37

Enthalten in:

Antioxidants & redox signaling - 37(2022), 13-15 vom: 21. Nov., Seite 1051-1071

Sprache:

Englisch

Beteiligte Personen:

Valerio, Vincenza [VerfasserIn]
Keceli, Gizem [VerfasserIn]
Moschetta, Donato [VerfasserIn]
Porro, Benedetta [VerfasserIn]
Ciccarelli, Michele [VerfasserIn]
Massaiu, Ilaria [VerfasserIn]
Songia, Paola [VerfasserIn]
Maione, Angela S [VerfasserIn]
Alfieri, Valentina [VerfasserIn]
Myasoedova, Veronika A [VerfasserIn]
Zanobini, Marco [VerfasserIn]
Paolocci, Nazareno [VerfasserIn]
Poggio, Paolo [VerfasserIn]

Links:

Volltext

Themen:

Antioxidants
Calcific aortic valve stenosis
Calcification
Calcium
Endothelial cells
Journal Article
Oxidative stress
Protein S-glutathionylation
Reactive Oxygen Species
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
SY7Q814VUP

Anmerkungen:

Date Completed 04.11.2022

Date Revised 02.11.2023

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1089/ars.2021.0133

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM339885874