Carbon Monoxide Activates PERK-Regulated Autophagy to Induce Immunometabolic Reprogramming and Boost Antitumor T-cell Function

©2022 American Association for Cancer Research..

Mitochondria and endoplasmic reticulum (ER) share structural and functional networks and activate well-orchestrated signaling processes to shape cells' fate and function. While persistent ER stress (ERS) response leads to mitochondrial collapse, moderate ERS promotes mitochondrial function. Strategies to boost antitumor T-cell function by targeting ER-mitochondria cross-talk have not yet been exploited. Here, we used carbon monoxide (CO), a short-lived gaseous molecule, to test whether engaging moderate ERS conditions can improve mitochondrial and antitumor functions in T cells. In melanoma antigen-specific T cells, CO-induced transient activation of ERS sensor protein kinase R-like endoplasmic reticulum kinase (PERK) significantly increased antitumor T-cell function. Furthermore, CO-induced PERK activation temporarily halted protein translation and induced protective autophagy, including mitophagy. The use of LC3-GFP enabled differentiation between the cells that prepare themselves to undergo active autophagy (LC3-GFPpos) and those that fail to enter the process (LC3-GFPneg). LC3-GFPpos T cells showed strong antitumor potential, whereas LC3-GFPneg cells exhibited a T regulatory-like phenotype, harbored dysfunctional mitochondria, and accumulated abnormal metabolite content. These anomalous ratios of metabolites rendered the cells with a hypermethylated state and distinct epigenetic profile, limiting their antitumor activity. Overall, this study shows that ERS-activated autophagy pathways modify the mitochondrial function and epigenetically reprogram T cells toward a superior antitumor phenotype to achieve robust tumor control.

SIGNIFICANCE: Transient activation of ER stress with carbon monoxide drives mitochondrial biogenesis and protective autophagy that elicits superior antitumor T-cell function, revealing an approach to improving adoptive cell efficacy therapy.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:82

Enthalten in:

Cancer research - 82(2022), 10 vom: 16. Mai, Seite 1969-1990

Sprache:

Englisch

Beteiligte Personen:

Chakraborty, Paramita [VerfasserIn]
Parikh, Rasesh Y [VerfasserIn]
Choi, Seungho [VerfasserIn]
Tran, Danh [VerfasserIn]
Gooz, Monika [VerfasserIn]
Hedley, Zachariah T [VerfasserIn]
Kim, Do-Sung [VerfasserIn]
Pytel, Dariusz [VerfasserIn]
Kang, Inhong [VerfasserIn]
Nadig, Satish N [VerfasserIn]
Beeson, Gyda C [VerfasserIn]
Ball, Lauren [VerfasserIn]
Mehrotra, Meenal [VerfasserIn]
Wang, Hongjun [VerfasserIn]
Berto, Stefano [VerfasserIn]
Palanisamy, Viswanathan [VerfasserIn]
Li, Hong [VerfasserIn]
Chatterjee, Shilpak [VerfasserIn]
Rodriguez, Paulo C [VerfasserIn]
Maldonado, Eduardo N [VerfasserIn]
Diehl, J Alan [VerfasserIn]
Gangaraju, Vamsi K [VerfasserIn]
Mehrotra, Shikhar [VerfasserIn]

Links:

Volltext

Themen:

7U1EE4V452
Carbon Monoxide
EC 2.7.11.1
EIF-2 Kinase
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 17.05.2022

Date Revised 20.11.2023

published: Print

Citation Status MEDLINE

doi:

10.1158/0008-5472.CAN-21-3155

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM339340231