Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway

Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved..

Mitophagy preserves microvascular structure and function during myocardial ischemia/reperfusion (I/R) injury. Empagliflozin, an anti-diabetes drug, may also protect mitochondria. We explored whether empagliflozin could reduce cardiac microvascular I/R injury by enhancing mitophagy. In mice, I/R injury induced luminal stenosis, microvessel wall damage, erythrocyte accumulation and perfusion defects in the myocardial microcirculation. Additionally, I/R triggered endothelial hyperpermeability and myocardial neutrophil infiltration, which upregulated adhesive factors and endothelin-1 but downregulated vascular endothelial cadherin and endothelial nitric oxide synthase in heart tissue. In vitro, I/R impaired the endothelial barrier function and integrity of cardiac microvascular endothelial cells (CMECs), while empagliflozin preserved CMEC homeostasis and thus maintained cardiac microvascular structure and function. I/R activated mitochondrial fission, oxidative stress and apoptotic signaling in CMECs, whereas empagliflozin normalized mitochondrial fission and fusion, neutralized supraphysiologic reactive oxygen species concentrations and suppressed mitochondrial apoptosis. Empagliflozin exerted these protective effects by activating FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Both in vitro and in vivo, genetic ablation of AMPKα1 or FUNDC1 abolished the beneficial effects of empagliflozin on the myocardial microvasculature and CMECs. Taken together, the preservation of mitochondrial function through an activation of the AMPKα1/ULK1/FUNDC1/mitophagy pathway is the working mechanism of empagliflozin in attenuating cardiac microvascular I/R injury.

Errataetall:

ErratumIn: Redox Biol. 2023 Jul;63:102738. - PMID 37202250

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:52

Enthalten in:

Redox biology - 52(2022) vom: 30. Juni, Seite 102288

Sprache:

Englisch

Beteiligte Personen:

Cai, Chen [VerfasserIn]
Guo, Zhongzhou [VerfasserIn]
Chang, Xing [VerfasserIn]
Li, Ziying [VerfasserIn]
Wu, Feng [VerfasserIn]
He, Jing [VerfasserIn]
Cao, Tiantian [VerfasserIn]
Wang, Kangrong [VerfasserIn]
Shi, Nengxian [VerfasserIn]
Zhou, Hao [VerfasserIn]
Toan, Sam [VerfasserIn]
Muid, David [VerfasserIn]
Tan, Ying [VerfasserIn]

Links:

Volltext

Themen:

AMPKα1/ULK1 pathway
Benzhydryl Compounds
Cardiac microvascular I/R injury
Empagliflozin
FUNDC1 protein, mouse
FUNDC1-Dependent mitophagy
Glucosides
HDC1R2M35U
Journal Article
Membrane Proteins
Mitochondrial Proteins
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 10.05.2022

Date Revised 18.05.2023

published: Print-Electronic

ErratumIn: Redox Biol. 2023 Jul;63:102738. - PMID 37202250

Citation Status MEDLINE

doi:

10.1016/j.redox.2022.102288

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM338560920