iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease modeling

© 2022, Guo et al..

Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a PAX3+/MYOD1+ skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells. iMyoblasts also efficiently xenoengrafted into irradiated and injured mouse muscle where they undergo differentiation and fetal-adult MYH isoform switching, demonstrating their regulatory plasticity for adult muscle maturation in response to signals in the host muscle. Xenograft muscle retains PAX3+ muscle progenitors and can regenerate human muscle in response to secondary injury. As models of disease, iMyoblasts from individuals with Facioscapulohumeral Muscular Dystrophy revealed a previously unknown epigenetic regulatory mechanism controlling developmental expression of the pathological DUX4 gene. iMyoblasts from Limb-Girdle Muscular Dystrophy R7 and R9 and Walker Warburg Syndrome patients modeled their molecular disease pathologies and were responsive to small molecule and gene editing therapeutics. These findings establish the utility of iMyoblasts for ex vivo and in vivo investigations of human myogenesis and disease pathogenesis and for the development of muscle stem cell therapeutics.

Medienart:

E-Artikel

Erscheinungsjahr:

2022

Erschienen:

2022

Enthalten in:

Zur Gesamtaufnahme - volume:11

Enthalten in:

eLife - 11(2022) vom: 25. Jan.

Sprache:

Englisch

Beteiligte Personen:

Guo, Dongsheng [VerfasserIn]
Daman, Katelyn [VerfasserIn]
Chen, Jennifer Jc [VerfasserIn]
Shi, Meng-Jiao [VerfasserIn]
Yan, Jing [VerfasserIn]
Matijasevic, Zdenka [VerfasserIn]
Rickard, Amanda M [VerfasserIn]
Bennett, Monica H [VerfasserIn]
Kiselyov, Alex [VerfasserIn]
Zhou, Haowen [VerfasserIn]
Bang, Anne G [VerfasserIn]
Wagner, Kathryn R [VerfasserIn]
Maehr, René [VerfasserIn]
King, Oliver D [VerfasserIn]
Hayward, Lawrence J [VerfasserIn]
Emerson, Charles P [VerfasserIn]

Links:

Volltext

Themen:

138016-91-8
Developmental biology
Dux4 protein, mouse
Homeodomain Proteins
Human
Human ipsc myogenesis
IMyoblasts
Journal Article
Mouse
Muscle stem cells
PAX3 Transcription Factor
Pax3 protein, mouse
Regenerative medicine
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Stem cells
Xenograft

Anmerkungen:

Date Completed 04.03.2022

Date Revised 05.04.2024

published: Electronic

Citation Status MEDLINE

doi:

10.7554/eLife.70341

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM336105150