The Antifungal Activity of Ag/CHI NPs against Rhizoctonia solani Linked with Tomato Plant Health

Pathogenic infestations are significant threats to vegetable yield, and have become an urgent problem to be solved. Rhizoctonia solani is one of the worst fungi affecting tomato crops, reducing yield in some regions. It is a known fact that plants have their own defense against such infestations; however, it is unclear whether any exogenous material can help plants against infestation. Therefore, we performed greenhouse experiments to evaluate the impacts of R. solani on 15- and 30-day old tomato plants after fungal infestation, and estimated the antifungal activity of nanoparticles (NPs) against the pathogen. We observed severe pathogenic impacts on the above-ground tissues of tomato plants which would affect plant physiology and crop production. Pathogenic infection reduced total chlorophyll and anthocyanin contents, which subsequently disturbed plant physiology. Further, total phenolic contents (TPC), total flavonoid contents (TFC), and malondialdehyde (MDA) contents were significantly increased in pathogen treatments. Constitutively, enhanced activities were estimated for catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) in response to reactive oxygen species (ROS)in pathogen-treated plants. Moreover, pathogenesis-related genes, namely, chitinase, plant glutathione S-transferase (GST), phenylalanine ammonia-lyase (PAL1), pathogenesis-related protein (PR12), and pathogenesis-related protein (PR1) were evaluated, with significant differences between treated and control plants. In vitro and greenhouse antifungal activity of silver nanoparticles (Ag NPs), chitosan nanoparticles, and Ag NPs/CHI NPs composites and plant health was studied using transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectrophotometry. We found astonishing results, namely, that Ag and CHI have antifungal activities against R. solani. Overall, plant health was much improved following treatment with Ag NPs/CHI NPs composites. In order to manage R. solani pathogenicity and improve tomato health, Ag/CHI NPs composites could be used infield as well as on commercial levels based on recommendations. However, there is an urgent need to first evaluate whether these NP composites have any secondary impacts on human health or the environment.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:10

Enthalten in:

Plants (Basel, Switzerland) - 10(2021), 11 vom: 25. Okt.

Sprache:

Englisch

Beteiligte Personen:

Al-Surhanee, Ameena A [VerfasserIn]
Afzal, Muhammad [VerfasserIn]
Bouqellah, Nahla Alsayed [VerfasserIn]
Ouf, Salama A [VerfasserIn]
Muhammad, Sajid [VerfasserIn]
Jan, Mehmood [VerfasserIn]
Kaleem, Sidra [VerfasserIn]
Hashem, Mohamed [VerfasserIn]
Alamri, Saad [VerfasserIn]
Abdel Latef, Arafat Abdel Hamed [VerfasserIn]
Ali, Omar M [VerfasserIn]
Soliman, Mona H [VerfasserIn]

Links:

Volltext

Themen:

Antioxidants
Chitosan
Journal Article
Nanoparticles
Plant defense
Rhizoctonia solani

Anmerkungen:

Date Revised 30.11.2021

published: Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.3390/plants10112283

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM333717708