Inherent stochasticity during insulator-metal transition in VO2

Vanadium dioxide (VO2), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO2 at local areas in planar VO2/TiO2 device configuration under external biasing. After each resistive switching, different VO2 monoclinic crystal orientations are observed, forming different equilibrium states. We have evaluated a statistical cycle-to-cycle variation, demonstrated a stochastic nature of the volatile resistive switching, and presented an approach to study in-plane structural anisotropy. Our microscopic studies move a big step forward toward understanding the volatile switching mechanisms and the related applications of VO2 as the key material of neuromorphic computing.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:118

Enthalten in:

Proceedings of the National Academy of Sciences of the United States of America - 118(2021), 37 vom: 14. Sept.

Sprache:

Englisch

Beteiligte Personen:

Cheng, Shaobo [VerfasserIn]
Lee, Min-Han [VerfasserIn]
Tran, Richard [VerfasserIn]
Shi, Yin [VerfasserIn]
Li, Xing [VerfasserIn]
Navarro, Henry [VerfasserIn]
Adda, Coline [VerfasserIn]
Meng, Qingping [VerfasserIn]
Chen, Long-Qing [VerfasserIn]
Dynes, R C [VerfasserIn]
Ong, Shyue Ping [VerfasserIn]
Schuller, Ivan K [VerfasserIn]
Zhu, Yimei [VerfasserIn]

Links:

Volltext

Themen:

Insulator–metal transition
Journal Article
Operando transmission electron microscopy
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Resistive switching

Anmerkungen:

Date Completed 06.12.2021

Date Revised 03.04.2024

published: Print

Citation Status PubMed-not-MEDLINE

doi:

10.1073/pnas.2105895118

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM330359894