Salidroside Activates the AMP-Activated Protein Kinase Pathway to Suppress Nonalcoholic Steatohepatitis in Mice

© 2021 by the American Association for the Study of Liver Diseases..

BACKGROUND AND AIMS: NASH is becoming a leading cause of liver cirrhosis and HCC. Salidroside (p-hydroxyphenethyl-β-D-glucoside; SAL) has various biological and pharmacological activities, including anti-inflammatory, -oxidant, and -cancer activities. However, the therapeutic effect and underlying molecular mechanism of SAL in NASH remain to be further clarified.

METHODS AND RESULTS: In this study, we found that SAL alleviated lipid accumulation and inflammatory response in primary hepatocytes after palmitic acid/oleic acid (PO) stimulation. In addition, SAL effectively prevented high-fat/high-cholesterol (HFHC)-diet-induced NASH progression by regulating glucose metabolism dysregulation, insulin resistance, lipid accumulation, inflammation, and fibrosis. Mechanistically, integrated RNA-sequencing and bioinformatic analysis showed that SAL promoted AMPK-signaling pathway activation in vitro and in vivo, and this finding was further verified by determining the phosphorylation levels of AMPK. Furthermore, the protective effects of SAL on lipid accumulation and inflammation in hepatocytes and livers induced by PO or HFHC stimulation were blocked by AMPK interruption.

CONCLUSIONS: Our studies demonstrate that SAL protects against metabolic-stress-induced NASH progression through activation of AMPK signaling, indicating that SAL could be a potential drug component for NASH therapy.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:74

Enthalten in:

Hepatology (Baltimore, Md.) - 74(2021), 6 vom: 01. Dez., Seite 3056-3073

Sprache:

Englisch

Beteiligte Personen:

Hu, Manli [VerfasserIn]
Zhang, Dingran [VerfasserIn]
Xu, Hongyang [VerfasserIn]
Zhang, Yan [VerfasserIn]
Shi, Hongjie [VerfasserIn]
Huang, Xiaoli [VerfasserIn]
Wang, Xinhui [VerfasserIn]
Wu, Yan [VerfasserIn]
Qi, Zhili [VerfasserIn]

Links:

Volltext

Themen:

AMP-Activated Protein Kinases
EC 2.7.11.31
Glucosides
Journal Article
M983H6N1S9
Phenols
Research Support, Non-U.S. Gov't
Rhodioloside

Anmerkungen:

Date Completed 14.01.2022

Date Revised 14.01.2022

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1002/hep.32066

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM328375535