Why Plants Harbor Complex Endophytic Fungal Communities : Insights From Perennial Bunchgrass Stipagrostis sabulicola in the Namib Sand Sea

Copyright © 2021 Wenndt, Evans, van Diepeningen, Logan, Jacobson, Seely and Jacobson..

All perennial plants harbor diverse endophytic fungal communities, but why they tolerate these complex asymptomatic symbioses is unknown. Using a multi-pronged approach, we conclusively found that a dryland grass supports endophyte communities comprised predominantly of latent saprophytes that can enhance localized nutrient recycling after senescence. A perennial bunchgrass, Stipagrostis sabulicola, which persists along a gradient of extreme abiotic stress in the hyper-arid Namib Sand Sea, was the focal point of our study. Living tillers yielded 20 fungal endophyte taxa, 80% of which decomposed host litter during a 28-day laboratory decomposition assay. During a 6-month field experiment, tillers with endophytes decomposed twice as fast as sterilized tillers, consistent with the laboratory assay. Furthermore, profiling the community active during decomposition using next-generation sequencing revealed that 59-70% of the S. sabulicola endophyte community is comprised of latent saprophytes, and these dual-niche fungi still constitute a large proportion (58-62%) of the litter community more than a year after senescence. This study provides multiple lines of evidence that the fungal communities that initiate decomposition of standing litter develop in living plants, thus providing a plausible explanation for why plants harbor complex endophyte communities. Using frequent overnight non-rainfall moisture events (fog, dew, high humidity), these latent saprophytes can initiate decomposition of standing litter immediately after tiller senescence, thus maximizing the likelihood that plant-bound nutrients are recycled in situ and contribute to the nutrient island effect that is prevalent in drylands.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:12

Enthalten in:

Frontiers in microbiology - 12(2021) vom: 01., Seite 691584

Sprache:

Englisch

Beteiligte Personen:

Wenndt, Anthony J [VerfasserIn]
Evans, Sarah E [VerfasserIn]
van Diepeningen, Anne D [VerfasserIn]
Logan, J Robert [VerfasserIn]
Jacobson, Peter J [VerfasserIn]
Seely, Mary K [VerfasserIn]
Jacobson, Kathryn M [VerfasserIn]

Links:

Volltext

Themen:

Decomposition
Drylands
Endophyte
Fungal community
Journal Article
Latent saprophyte
Nutrient islands

Anmerkungen:

Date Revised 26.06.2021

published: Electronic-eCollection

Citation Status PubMed-not-MEDLINE

doi:

10.3389/fmicb.2021.691584

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM327157909