Computational prediction of nimbanal as potential antagonist of respiratory syndrome coronavirus

© 2021 The Authors..

The high pathogenic nature of the Middle East Respiratory coronavirus (MER) and the associated high fatality rate demands an urgent attention from researchers. Because there is currently no approved drug for the management of the disease, research efforts have been intensified towards the discovery of a potent drug for the treatment of the disease. Papain Like protease (PLpro) is one of the key proteins involved in the viral replication. We therefore docked forty-six compounds already characterized from Azadirachta indica, Xylopia aethipica and Allium cepa against MERS-CoV-PLpro. The molecular docking analysis was performed with AutoDock 1.5.6 and compounds which exhibit more negative free energy of binding, and low inhibition constant (Ki) with the protein (MERS-CoV-PLpro) were considered potent. The physicochemical and pharmacokinetic properties of the compounds were predicted using the Swissadme web server. Twenty-two of the compounds showed inhibition potential similar to dexamethasone and remdesvir, which had binding affinity of -6.8 and -6.3 kcal/mol respectively. The binding affinity of the compounds ranged between -3.4 kcal/mol and -7.7 kcal/mol whereas; hydroxychloroquine had a binding affinity of -4.5 kcal/mol. Among all the compounds, nimbanal and verbenone showed drug likeliness, they did not violate the Lipinski rule neither were they inhibitors of drug-metabolizing enzymes. Both nimbanal and verbenone were further post-scored with MM/GBSA and the binding free energy of nimbanal (-25.51 kcal/mol) was comparable to that of dexamethasone (-25.46 kcal/mol). The RMSD, RMSF, torsional angle, and other analysis following simulation further substantiate the efficacy of nimbanal as an effective drug candidate. In conclusion, our study showed that nimbanal is a more promising therapeutic agent and could be a lead for the discovery of a new drug that may be useful in the management of severe respiratory coronavirus syndrome.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:24

Enthalten in:

Informatics in medicine unlocked - 24(2021) vom: 21., Seite 100617

Sprache:

Englisch

Beteiligte Personen:

Adegbola, Aanuoluwa Eunice [VerfasserIn]
Fadahunsi, Olumide Samuel [VerfasserIn]
Alausa, Abdulahi [VerfasserIn]
Abijo, Ayodeji Zabdiel [VerfasserIn]
Balogun, Toheeb Adewale [VerfasserIn]
Aderibigbe, Taiwo Sarah [VerfasserIn]
Semire, Banjo [VerfasserIn]
Adegbola, Peter Ifeoluwa [VerfasserIn]

Links:

Volltext

Themen:

Dexamethasone
Journal Article
Medicinal plants
Molecular dynamics
Nimbanal
Papain like protease
Respiratory syndrome coronavirus

Anmerkungen:

Date Revised 11.11.2023

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1016/j.imu.2021.100617

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM326238166