Ultrapotent bispecific antibodies neutralize emerging SARS-CoV-2 variants

The emergence of SARS-CoV-2 variants that threaten the efficacy of existing vaccines and therapeutic antibodies underscores the urgent need for new antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells of COVID-19 patients. The three most potent antibodies targeted distinct regions of the RBD, and all three neutralized the SARS-CoV-2 variants B.1.1.7 and B.1.351. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the ACE2 receptor, and has limited contact with key variant residues K417, E484 and N501. We designed bispecific antibodies by combining non-overlapping specificities and identified five ultrapotent bispecific antibodies that inhibit authentic SARS-CoV-2 infection at concentrations of <1 ng/mL. Through a novel mode of action three bispecific antibodies cross-linked adjacent spike proteins using dual NTD/RBD specificities. One bispecific antibody was >100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a 2.5 mg/kg dose. Notably, six of nine bispecific antibodies neutralized B.1.1.7, B.1.351 and the wild-type virus with comparable potency, despite partial or complete loss of activity of at least one parent monoclonal antibody against B.1.351. Furthermore, a bispecific antibody that neutralized B.1.351 protected against SARS-CoV-2 expressing the crucial E484K mutation in the hamster model. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.

Errataetall:

UpdateIn: Sci Transl Med. 2021 Oct 20;13(616):eabj5413. - PMID 34519517

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - year:2021

Enthalten in:

bioRxiv : the preprint server for biology - (2021) vom: 01. Apr.

Sprache:

Englisch

Beteiligte Personen:

Cho, Hyeseon [VerfasserIn]
Gonzales-Wartz, Kristina Kay [VerfasserIn]
Huang, Deli [VerfasserIn]
Yuan, Meng [VerfasserIn]
Peterson, Mary [VerfasserIn]
Liang, Janie [VerfasserIn]
Beutler, Nathan [VerfasserIn]
Torres, Jonathan L [VerfasserIn]
Cong, Yu [VerfasserIn]
Postnikova, Elena [VerfasserIn]
Bangaru, Sandhya [VerfasserIn]
Talana, Chloe Adrienna [VerfasserIn]
Shi, Wei [VerfasserIn]
Yang, Eun Sung [VerfasserIn]
Zhang, Yi [VerfasserIn]
Leung, Kwanyee [VerfasserIn]
Wang, Lingshu [VerfasserIn]
Peng, Linghang [VerfasserIn]
Skinner, Jeff [VerfasserIn]
Li, Shanping [VerfasserIn]
Wu, Nicholas C [VerfasserIn]
Liu, Hejun [VerfasserIn]
Dacon, Cherrelle [VerfasserIn]
Moyer, Thomas [VerfasserIn]
Cohen, Melanie [VerfasserIn]
Zhao, Ming [VerfasserIn]
Lee, F Eun-Hyung [VerfasserIn]
Weinberg, Rona S [VerfasserIn]
Douagi, Iyadh [VerfasserIn]
Gross, Robin [VerfasserIn]
Schmaljohn, Connie [VerfasserIn]
Pegu, Amarendra [VerfasserIn]
Mascola, John R [VerfasserIn]
Holbrook, Michael [VerfasserIn]
Nemazee, David [VerfasserIn]
Rogers, Thomas F [VerfasserIn]
Ward, Andrew B [VerfasserIn]
Wilson, Ian A [VerfasserIn]
Crompton, Peter D [VerfasserIn]
Tan, Joshua [VerfasserIn]

Links:

Volltext

Themen:

Preprint

Anmerkungen:

Date Revised 11.02.2024

published: Electronic

UpdateIn: Sci Transl Med. 2021 Oct 20;13(616):eabj5413. - PMID 34519517

Citation Status PubMed-not-MEDLINE

doi:

10.1101/2021.04.01.437942

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM323766439