Anti-Tumor Efficacy of Pyrvinium Pamoate Nanoliposomes in an Experimental Model of Melanoma

Copyright© Bentham Science Publishers; For any queries, please email at epubbenthamscience.net..

BACKGROUND: Pyrvinium Pamoate (PP) is an old drug approved by the FDA for the treatment of pinworm infections. Recently, it has been introduced as an anti-tumor agent, however, low aqueous solubility severely limits its potential effects. In this study, we developed a liposomal formulation of pyrvinium pamoate to investigate its in vitro cytotoxicity and in vivo efficacy against melanoma cells.

MATERIALS & METHODS: As drug carriers, liposomes were fabricated using the thin-film method. PP was encapsulated within the liposomes using a remote loading method. We evaluated the morphology, particle size, and Zeta potential of the liposomes. Additionally, High-Performance Liquid Chromatography (HPLC) was employed for qualitative and quantitative analysis. Then we investigated our liposomal PP for its in vitro cytotoxicity as well as the tumor growth inhibition in C57BL/6 mice bearing B16F0 melanoma tumors.

RESULTS: Based on the analytical result, the liposomal drug delivery system is a homogeneous and stable colloidal suspension of PP particles. The images of Atomic force microscopy and particle size data showed that all the prepared nanocarriers were spherical with a diameter of approximately 101 nm. According to both in vitro and in vivo studies, nanoliposomal PP exhibited an improved anti-proliferative potential against B16F10 melanoma tumor compared to free PP.

CONCLUSION: Liposomal encapsulation improves the water solubility of PP and enhances its anti-cancer activity.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:21

Enthalten in:

Anti-cancer agents in medicinal chemistry - 21(2021), 17 vom: 04., Seite 2379-2384

Sprache:

Englisch

Beteiligte Personen:

Hatamipour, Mahdi [VerfasserIn]
Jaafari, Mahmoud R [VerfasserIn]
Zangui, Mahtab [VerfasserIn]
Shakour, Neda [VerfasserIn]
Sahebkar, Amirhossein [VerfasserIn]

Links:

Volltext

Themen:

6B9991FLU3
Antineoplastic Agents
Cancer
Drug Carriers
Drug delivery
Journal Article
Liposomes
Melanoma
Nanoliposomes.
Nanotechnology
Pyrvinium
Pyrvinium Compounds
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 20.01.2022

Date Revised 20.01.2022

published: Print

Citation Status MEDLINE

doi:

10.2174/1871520621666210217095627

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM32155731X