Push-Pull Electronic Effects in Surface-Active Sites Enhance Electrocatalytic Oxygen Evolution on Transition Metal Oxides

© 2021 Wiley-VCH GmbH..

Sustainable electrocatalysis of the oxygen evolution reaction (OER) constitutes a major challenge for the realization of green fuels. Oxides based on Ni and Fe in alkaline media have been proposed to avoid using critical raw materials. However, their ill-defined structures under OER conditions make the identification of key descriptors difficult. Here, we have studied Fe-Ni-Zn spinel oxides, with a well-defined crystal structure, as a platform to obtain general understanding on the key contributions. The OER reaches maximum performance when: (i) Zn is present in the Spinel structure, (ii) very dense, equimolar 1 : 1 : 1 stoichiometry sites appear on the surface as they allow the formation of oxygen vacancies where Zn favors pushing the electronic density that is pulled by the octahedral Fe and tetrahedral Ni redox pair lowering the overpotential. Our work proves cooperative electronic effects on surface active sites as key to design optimum OER electrocatalysts.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:14

Enthalten in:

ChemSusChem - 14(2021), 6 vom: 22. März, Seite 1595-1601

Sprache:

Englisch

Beteiligte Personen:

Garcés-Pineda, Felipe Andrés [VerfasserIn]
Chuong Nguyën, Huu [VerfasserIn]
Blasco-Ahicart, Marta [VerfasserIn]
García-Tecedor, Miguel [VerfasserIn]
de Fez Febré, Mabel [VerfasserIn]
Tang, Peng-Yi [VerfasserIn]
Arbiol, Jordi [VerfasserIn]
Giménez, Sixto [VerfasserIn]
Galán-Mascarós, José Ramón [VerfasserIn]
López, Núria [VerfasserIn]

Links:

Volltext

Themen:

Descriptors
Journal Article
Mixed metal oxides
Oxygen vacancy
Spinels
Water splitting

Anmerkungen:

Date Revised 23.03.2021

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1002/cssc.202002782

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM320735834