Identification of Radil as a Ras binding partner and putative activator

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved..

Ras genes are among the most frequently mutated oncogenes in human malignancies. To date, there are no successful anticancer drugs in the clinic that target Ras proteins or their pathways. Therefore, it is imperative to identify and characterize new components that regulate Ras activity or mediate its downstream signaling. To this end, we used a combination of affinity-pulldown and mass spectrometry to search for proteins that are physically associated with KRas. One of the top hits was Radil, a gene product with a Ras-association domain. Radil is known to be a downstream effector of Rap1, inhibiting RhoA signaling to regulate cell adhesion and migration. We demonstrate that Radil interacted with all three isoforms of Ras including HRas, NRas, and KRas, although it exhibited the strongest interaction with KRas. Moreover, Radil interacts with GTP-bound Ras more efficiently, suggesting a possibility that Radil may be involved in Ras activation. Supporting this, ectopic expression of Radil led to transient activation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase; Radil knockdown resulted in weakened activation of Ras downstream signaling components, which was coupled with decreased cell proliferation and invasion, and reduced expression of mesenchymal cell markers. Moreover, Radil knockdown greatly reduced the number of adhesion foci and depolymerized actin filaments, molecular processes that facilitate cancer cell migration. Taken together, our present studies strongly suggest that Radil is an important player for regulating Ras signaling, cell adhesion, and the epithelial-mesenchymal transition and may provide new directions for Ras-related anticancer drug development.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:296

Enthalten in:

The Journal of biological chemistry - 296(2021) vom: 15. Jan., Seite 100314

Sprache:

Englisch

Beteiligte Personen:

Choi, Byeong Hyeok [VerfasserIn]
Kou, Ziyue [VerfasserIn]
Colon, Tania Marlyn [VerfasserIn]
Chen, Chih-Hong [VerfasserIn]
Chen, Yuan [VerfasserIn]
Dai, Wei [VerfasserIn]

Links:

Volltext

Themen:

124671-05-2
Carrier Proteins
Cell adhesion
Cell invasion
EC 2.7.11.24
EC 2.7.12.2
EC 3.6.5.2
Epithelial–mesenchymal transition
Extracellular Signal-Regulated MAP Kinases
Journal Article
KRAS protein, human
KRas
Mitogen-Activated Protein Kinase Kinases
Proto-Oncogene Proteins p21(ras)
RADIL protein, human
RHOA protein, human
Radil
Rap1 GTP-Binding Proteins
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
RhoA GTP-Binding Protein

Anmerkungen:

Date Completed 26.08.2021

Date Revised 18.03.2022

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.jbc.2021.100314

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM320444287