Generation of brain organoids from mouse ESCs via teratoma formation

Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved..

Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs), can differentiate into all cell types in the body; therefore, they are used in the study of development and regenerative medicine. Neural lineage differentiation from PSCs is the initial step to study neurodevelopment and in vitro disease modeling. Brain organoids, which are composed of neural stem cells (NSCs) and differentiated neural lineage cell population, are a powerful in vitro system to mimic the brain tissue. Here, we aimed to establish a new method to generate brain organoids efficiently in a mouse model. We applied the in vivo teratoma formation method as a new approach to generate brain organoids. We induced teratoma formation using Sox1-GFP transgenic ESCs, in which green fluorescence protein (GFP) is expressed under the control of the early NSC marker Sox1. Sox1-GFP-expressing early NSCs were isolated as clumps and further cultured to generate brain organoids. Sox1-GFP ESC-derived brain organoids, composed of multiple layers of distinct cellular components (ventricle, ventricular zone, and cortical layer), were formed within 3 weeks of in vitro culture. We also found that neighboring cells (Sox1-GFP-) surrounding the Sox1-GFP+ clumps are essential for the formation of brain organoids. Thus, in vivo and in vitro conjugated systems-initial commitment in vivo and further specialization in vitro-could be one of the promising platforms for organoid formation that are universally applicable.

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:49

Enthalten in:

Stem cell research - 49(2020) vom: 01. Dez., Seite 102100

Sprache:

Englisch

Beteiligte Personen:

Lee, Won Ji [VerfasserIn]
Lee, Jeong Eon [VerfasserIn]
Hong, Yean Ju [VerfasserIn]
Yoon, Sang Hoon [VerfasserIn]
Song, Hyuk [VerfasserIn]
Park, Chankyu [VerfasserIn]
Hong, Kwonho [VerfasserIn]
Choi, Youngsok [VerfasserIn]
Do, Jeong Tae [VerfasserIn]

Links:

Volltext

Themen:

Brain organoid
Differentiation
Journal Article
Pluripotency
Research Support, Non-U.S. Gov't
Sox1
Teratoma

Anmerkungen:

Date Completed 21.06.2021

Date Revised 21.06.2021

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.scr.2020.102100

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM318263750