Frame-Hydrogel Methodology for Engineering Highly Functional Cardiac Tissue Constructs

Engineered cardiac tissues hold tremendous promise for in vitro drug discovery, studies of heart development and disease, and therapeutic applications. Here, we describe a versatile "frame-hydrogel" methodology to generate engineered cardiac tissues with highly mature functional properties. This methodology has been successfully utilized with a variety of cell sources (neonatal rat ventricular myocytes, human and mouse pluripotent stem cell-derived cardiomyocytes) to generate tissues with diverse 3D geometries (patch, bundle, network) and levels of structural and functional anisotropy. Maturation of such engineered cardiac tissues is rapidly achieved without the need for exogenous electrical or mechanical stimulation or use of complex bioreactors, with tissues routinely reaching conduction velocities and specific forces of 25 cm/s and 20 mN/mm2, respectively, and forces per input cardiomyocyte of up to 12 nN. This method is reproducible and readily scalable to generate small tissues ideal for in vitro testing as well as tissues with large, clinically relevant dimensions.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:2158

Enthalten in:

Methods in molecular biology (Clifton, N.J.) - 2158(2021) vom: 28., Seite 171-186

Sprache:

Englisch

Beteiligte Personen:

Helfer, Abbigail [VerfasserIn]
Bursac, Nenad [VerfasserIn]

Links:

Volltext

Themen:

Cardiac bundle
Cardiac patch
Cardiomyocytes
Engineered cardiac tissues
Human pluripotent stem cells
Hydrogel
Hydrogels
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Tissue engineering

Anmerkungen:

Date Completed 12.03.2021

Date Revised 02.01.2022

published: Print

Citation Status MEDLINE

doi:

10.1007/978-1-0716-0668-1_13

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM314305777