Universal motion of mirror-symmetric microparticles in confined Stokes flow

Copyright © 2020 the Author(s). Published by PNAS..

Comprehensive understanding of particle motion in microfluidic devices is essential to unlock additional technologies for shape-based separation and sorting of microparticles like microplastics, cells, and crystal polymorphs. Such particles interact hydrodynamically with confining surfaces, thus altering their trajectories. These hydrodynamic interactions are shape dependent and can be tuned to guide a particle along a specific path. We produce strongly confined particles with various shapes in a shallow microfluidic channel via stop flow lithography. Regardless of their exact shape, particles with a single mirror plane have identical modes of motion: in-plane rotation and cross-stream translation along a bell-shaped path. Each mode has a characteristic time, determined by particle geometry. Furthermore, each particle trajectory can be scaled by its respective characteristic times onto two master curves. We propose minimalistic relations linking these timescales to particle shape. Together these master curves yield a trajectory universal to particles with a single mirror plane.

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:117

Enthalten in:

Proceedings of the National Academy of Sciences of the United States of America - 117(2020), 36 vom: 08. Sept., Seite 21865-21872

Sprache:

Englisch

Beteiligte Personen:

Georgiev, Rumen N [VerfasserIn]
Toscano, Sara O [VerfasserIn]
Uspal, William E [VerfasserIn]
Bet, Bram [VerfasserIn]
Samin, Sela [VerfasserIn]
van Roij, René [VerfasserIn]
Eral, Huseyin Burak [VerfasserIn]

Links:

Volltext

Themen:

Hele–Shaw flow
Journal Article
Microfluidics
Particle-laden flow
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 15.10.2020

Date Revised 29.03.2024

published: Print-Electronic

Citation Status PubMed-not-MEDLINE

doi:

10.1073/pnas.2005068117

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM314127445