In Vitro Cell Sensitivity to Palytoxin Correlates with High Gene Expression of the Na+/K+-ATPase β2 Subunit Isoform

The marine polyether palytoxin (PLTX) is one of the most toxic natural compounds, and is involved in human poisonings after oral, inhalation, skin and/or ocular exposure. Epidemiological and molecular evidence suggest different inter-individual sensitivities to its toxic effects, possibly related to genetic-dependent differences in the expression of Na+/K+-ATPase, its molecular target. To identify Na+/K+-ATPase subunits, isoforms correlated with in vitro PLTX cytotoxic potency, sensitivity parameters (EC50: PLTX concentration reducing cell viability by 50%; Emax: maximum effect induced by the highest toxin concentration; 10-7 M) were assessed in 60 healthy donors' monocytes by the MTT (methylthiazolyl tetrazolium) assay. Sensitivity parameters, not correlated with donors' demographic variables (gender, age and blood group), demonstrated a high inter-individual variability (median EC50 = 2.7 × 10-10 M, interquartile range: 0.4-13.2 × 10-10 M; median Emax = 92.0%, interquartile range: 87.5-94.4%). Spearman's analysis showed significant positive correlations between the β2-encoding ATP1B2 gene expression and Emax values (rho = 0.30; p = 0.025) and between Emax and the ATP1B2/ATP1B3 expression ratio (rho = 0.38; p = 0.004), as well as a significant negative correlation between Emax and the ATP1B1/ATP1B2 expression ratio (rho = -0.30; p = 0.026). This toxicogenetic study represents the first approach to define genetic risk factors that may influence the onset of adverse effects in human PLTX poisonings, suggesting that individuals with high gene expression pattern of the Na+/K+-ATPase β2 subunit (alone or as β2/β1 and/or β2/β3 ratio) could be highly sensitive to PLTX toxic effects.

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:21

Enthalten in:

International journal of molecular sciences - 21(2020), 16 vom: 14. Aug.

Sprache:

Englisch

Beteiligte Personen:

Pelin, Marco [VerfasserIn]
Stocco, Gabriele [VerfasserIn]
Florio, Chiara [VerfasserIn]
Sosa, Silvio [VerfasserIn]
Tubaro, Aurelia [VerfasserIn]

Links:

Volltext

Themen:

ATP1B2 protein, human
Acrylamides
Adenosine Triphosphatases
Cation Transport Proteins
Cell Adhesion Molecules, Neuronal
Cnidarian Venoms
Cytotoxicity
EC 3.6.1.-
Genetic variants
Journal Article
Na+/K+-ATPase
OQ17NC0MOV
Palytoxin
Protein Isoforms
Protein Subunits
Toxicogenetic

Anmerkungen:

Date Completed 18.02.2021

Date Revised 18.02.2021

published: Electronic

Citation Status MEDLINE

doi:

10.3390/ijms21165833

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM31397554X