Comparison of Multiscale Imaging Methods for Brain Research

A major challenge in neuroscience is how to study structural alterations in the brain. Even small changes in synaptic composition could have severe outcomes for body functions. Many neuropathological diseases are attributable to disorganization of particular synaptic proteins. Yet, to detect and comprehensively describe and evaluate such often rather subtle deviations from the normal physiological status in a detailed and quantitative manner is very challenging. Here, we have compared side-by-side several commercially available light microscopes for their suitability in visualizing synaptic components in larger parts of the brain at low resolution, at extended resolution as well as at super-resolution. Microscopic technologies included stereo, widefield, deconvolution, confocal, and super-resolution set-ups. We also analyzed the impact of adaptive optics, a motorized objective correction collar and CUDA graphics card technology on imaging quality and acquisition speed. Our observations evaluate a basic set of techniques, which allow for multi-color brain imaging from centimeter to nanometer scales. The comparative multi-modal strategy we established can be used as a guide for researchers to select the most appropriate light microscopy method in addressing specific questions in brain research, and we also give insights into recent developments such as optical aberration corrections.

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:9

Enthalten in:

Cells - 9(2020), 6 vom: 01. Juni

Sprache:

Englisch

Beteiligte Personen:

Tröger, Jessica [VerfasserIn]
Hoischen, Christian [VerfasserIn]
Perner, Birgit [VerfasserIn]
Monajembashi, Shamci [VerfasserIn]
Barbotin, Aurélien [VerfasserIn]
Löschberger, Anna [VerfasserIn]
Eggeling, Christian [VerfasserIn]
Kessels, Michael M [VerfasserIn]
Qualmann, Britta [VerfasserIn]
Hemmerich, Peter [VerfasserIn]

Links:

Volltext

Themen:

Advanced light microscopy
Brain
Comparative Study
Journal Article
Multi-scale imaging
Research Support, Non-U.S. Gov't
Super-resolution
Tissue

Anmerkungen:

Date Completed 02.03.2021

Date Revised 14.02.2024

published: Electronic

Citation Status MEDLINE

doi:

10.3390/cells9061377

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM310726387