Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissionsoup.com..

AIMS: Sodium-glucose-cotransporter-2 inhibitors showed favourable cardiovascular outcomes, but the underlying mechanisms are still elusive. This study investigated the mechanisms of empagliflozin in human and murine heart failure with preserved ejection fraction (HFpEF).

METHODS AND RESULTS: The acute mechanisms of empagliflozin were investigated in human myocardium from patients with HFpEF and murine ZDF obese rats, which were treated in vivo. As shown with immunoblots and ELISA, empagliflozin significantly suppressed increased levels of ICAM-1, VCAM-1, TNF-α, and IL-6 in human and murine HFpEF myocardium and attenuated pathological oxidative parameters (H2O2, 3-nitrotyrosine, GSH, lipid peroxide) in both cardiomyocyte cytosol and mitochondria in addition to improved endothelial vasorelaxation. In HFpEF, we found higher oxidative stress-dependent activation of eNOS leading to PKGIα oxidation. Interestingly, immunofluorescence imaging and electron microscopy revealed that oxidized PKG1α in HFpEF appeared as dimers/polymers localized to the outer-membrane of the cardiomyocyte. Empagliflozin reduced oxidative stress/eNOS-dependent PKGIα oxidation and polymerization resulting in a higher fraction of PKGIα monomers, which translocated back to the cytosol. Consequently, diminished NO levels, sGC activity, cGMP concentration, and PKGIα activity in HFpEF increased upon empagliflozin leading to improved phosphorylation of myofilament proteins. In skinned HFpEF cardiomyocytes, empagliflozin improved cardiomyocyte stiffness in an anti-oxidative/PKGIα-dependent manner. Monovariate linear regression analysis confirmed the correlation of oxidative stress and PKGIα polymerization with increased cardiomyocyte stiffness and diastolic dysfunction of the HFpEF patients.

CONCLUSION: Empagliflozin reduces inflammatory and oxidative stress in HFpEF and thereby improves the NO-sGC-cGMP-cascade and PKGIα activity via reduced PKGIα oxidation and polymerization leading to less pathological cardiomyocyte stiffness.

Errataetall:

CommentIn: Cardiovasc Res. 2021 Jan 21;117(2):343-345. - PMID 32637983

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:117

Enthalten in:

Cardiovascular research - 117(2021), 2 vom: 21. Jan., Seite 495-507

Sprache:

Englisch

Beteiligte Personen:

Kolijn, Detmar [VerfasserIn]
Pabel, Steffen [VerfasserIn]
Tian, Yanna [VerfasserIn]
Lódi, Mária [VerfasserIn]
Herwig, Melissa [VerfasserIn]
Carrizzo, Albino [VerfasserIn]
Zhazykbayeva, Saltanat [VerfasserIn]
Kovács, Árpád [VerfasserIn]
Fülöp, Gábor Á [VerfasserIn]
Falcão-Pires, Inês [VerfasserIn]
Reusch, Peter H [VerfasserIn]
Linthout, Sophie Van [VerfasserIn]
Papp, Zoltán [VerfasserIn]
van Heerebeek, Loek [VerfasserIn]
Vecchione, Carmine [VerfasserIn]
Maier, Lars S [VerfasserIn]
Ciccarelli, Michele [VerfasserIn]
Tschöpe, Carsten [VerfasserIn]
Mügge, Andreas [VerfasserIn]
Bagi, Zsolt [VerfasserIn]
Sossalla, Samuel [VerfasserIn]
Hamdani, Nazha [VerfasserIn]

Links:

Volltext

Themen:

Anti-Inflammatory Agents
Antioxidants
Benzhydryl Compounds
Cyclic GMP-Dependent Protein Kinase Type I
Diastolic function
EC 2.7.11.12
Empagliflozin
Glucosides
HDC1R2M35U
HFpEF
Inflammation Mediators
Journal Article
Oxidative stress
PKG
Research Support, Non-U.S. Gov't
Sodium-Glucose Transporter 2 Inhibitors

Anmerkungen:

Date Completed 03.12.2021

Date Revised 26.02.2024

published: Print

CommentIn: Cardiovasc Res. 2021 Jan 21;117(2):343-345. - PMID 32637983

Citation Status MEDLINE

doi:

10.1093/cvr/cvaa123

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM309796679