Coregulator Sin3a Promotes Postnatal Murine β-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response

© 2020 by the American Diabetes Association..

Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are coproduced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA sequencing coupled with candidate chromatin immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Finally, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet cell mass at birth, caused by decreased endocrine progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival.

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:69

Enthalten in:

Diabetes - 69(2020), 6 vom: 03. Juni, Seite 1219-1231

Sprache:

Englisch

Beteiligte Personen:

Yang, Xiaodun [VerfasserIn]
Graff, Sarah M [VerfasserIn]
Heiser, Cody N [VerfasserIn]
Ho, Kung-Hsien [VerfasserIn]
Chen, Bob [VerfasserIn]
Simmons, Alan J [VerfasserIn]
Southard-Smith, Austin N [VerfasserIn]
David, Gregory [VerfasserIn]
Jacobson, David A [VerfasserIn]
Kaverina, Irina [VerfasserIn]
Wright, Christopher V E [VerfasserIn]
Lau, Ken S [VerfasserIn]
Gu, Guoqiang [VerfasserIn]

Links:

Volltext

Themen:

Basic Helix-Loop-Helix Transcription Factors
Calcium
EC 3.5.1.98
Journal Article
Nerve Tissue Proteins
Neurog3 protein, mouse
Repressor Proteins
Research Support, N.I.H., Extramural
SIN3A transcription factor
SY7Q814VUP
Sin3 Histone Deacetylase and Corepressor Complex
Sin3b protein, mouse

Anmerkungen:

Date Completed 22.10.2020

Date Revised 28.03.2024

published: Print-Electronic

Citation Status MEDLINE

doi:

10.2337/db19-0721

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM308312236