Robust Single-Molecule Enzyme Nanocapsules for Biosensing with Significantly Improved Biosensor Stability

The present study demonstrates the use of highly stable single-molecule enzyme nanocapsules (SMENs) instead of traditional native enzyme as biorecognition element in enzyme-based biosensors. The main purpose of this study is to resolve the major obstacle and challenge in the biosensor field, i.e., the poor stability of enzyme-based biosensors, including thermal stability, organic solvent tolerance, long-term operational stability, etc. Highly active and robust SMENs of glucose oxidase (GOx, as a model enzyme) were synthesized (nGOx) using an in situ polymerization strategy in an aqueous environment. The particle-size distribution, transmission electron microscopic (TEM) images, and UV-vis spectral characterization revealed the formation of a thin polymer layer around each enzyme molecule. The polymer shell effectively stabilized the GOx enzyme core while enabling rapid substrate transportation, resulting in a new class of biocatalytic nanocapsules. Multiple covalent attachments between a thin polymer layer and an enzyme molecule strengthened the encapsulated GOx molecule. Encapsulation created a favorable microenvironment to avoid any structural dissociation at high temperature and helped to retain essential water during the organic solvent operation. The present work reports a study implementing nGOx SMENs as highly stable nano(bio)sensors for point-of-care diagnostic applications. Prepared nGOx SMENs manifested significantly improved thermal stability (even at 65 °C) and organic solvent tolerance without any compromise in biocatalytic activity. For example, the native GOx-based biosensor lost its catalytic activity for glucose after 4 h of incubation at high temperature (65 °C), while the nGOx/N-CNTs-Chi/GCE nano(bio)sensor maintained ∼56% of its original catalytic activity for glucose oxidation. The proposed SMENs-based nano(bio)sensors with robust stability in variable working environment could promote the development and applications of biosensors in point-of care diagnostics, biomedical detection, wearable devices, implantable equipment, and biofuel cells.

Medienart:

E-Artikel

Erscheinungsjahr:

2020

Erschienen:

2020

Enthalten in:

Zur Gesamtaufnahme - volume:92

Enthalten in:

Analytical chemistry - 92(2020), 8 vom: 21. Apr., Seite 5830-5837

Sprache:

Englisch

Beteiligte Personen:

Dhanjai [VerfasserIn]
Lu, Xianbo [VerfasserIn]
Wu, Lingxia [VerfasserIn]
Chen, Jiping [VerfasserIn]
Lu, Yunfeng [VerfasserIn]

Links:

Volltext

Themen:

EC 1.1.3.4
Glucose
Glucose Oxidase
IY9XDZ35W2
Journal Article
Nanocapsules
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 09.02.2021

Date Revised 09.02.2021

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1021/acs.analchem.9b05466

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM307886905