Mixed Ligand-metal Complexes of 2-(butan-2-ylidene) Hydrazinecarbothioamide- Synthesis, Characterization, Computer-Aided Drug Character Evaluation and in vitro Biological Activity Assessment

Copyright© Bentham Science Publishers; For any queries, please email at epubbenthamscience.net..

BACKGROUND: Mixed ligand-metal complexes are efficient chelating agents because of their flexible donor ability. Mixed ligand complexes containing hetero atoms sulphur, nitrogen and oxygen have been probed for their biological significance.

METHODS: Nine mixed ligand-metal complexes of 2-(butan-2-ylidene) hydrazinecarbothioamide (2- butanone thiosemicarbazone) with pyridine, bipyridine and 2-picoline as co-ligands were synthesized with Cu, Co and Zn salts. The complexes were tested against MDA-MB231 (MDA) and A549 cell lines. Antibacterial activity was tested against Staphylococcus aureus and Escherichia coli. The drug character of the complexes was evaluated on parameters viz. physicochemical properties, bioactivity scores, toxicity assessment and Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profile using various automated softwares. Molecular docking was performed against Ribonucleotide Reductase (RR) and topoisomerase II (topo II).

RESULTS: The mixed ligand-metal complexes were synthesized by condensation reaction for 4-5 h. The characterization was done by elemental analysis, 1H-NMR, FT-IR, molar conductance and UV spectroscopic techniques. Molecular docking results showed that [Cu(C5H11N3S)(py)2(CH3COO)2], [Zn(C5H11N3S)(bpy)(SO4)] and [Zn(C5H11N3S)(2-pic)2(SO4)] displayed the lowest binding energies with respect to RR. Against topo II [Cu(C5H11N3S)(py)2(CH3COO)2], [Cu(C5H11N3S)(bpy)(CH3COO)2] and [Zn(C5H11N3S)(2-pic)2(SO4)] had the lowest energies. The druglikness assessment was done using Leadlikeness and Lipinski's rules. Not more than two violations were obtained in case of each filtering rule showing drug-like character of the mixed ligand complexes. Some of the complexes exhibited positive bioactivity scores and almost all the complexes were predicted to be safe with no hazardous effects as predicted by the toxicity assessment. Ames test predicted the non-mutagenic nature of the complexes.

CONCLUSION: In vitro activity evaluation showed that [Zn(C5H11N3S)(py)2(SO4)], [Co(C5H11N3S(bpy) (Cl)2] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against MDA. Against A549 [Co(C5H11N3S)(py)2(Cl)2], [Cu(C5H11N3S)(py)2(CH3COO)2] and [Co(C5H11N3S(bpy)(Cl)2] were active. Antibacterial evaluation showed that [Co(C5H11N3S)(bpy)(Cl)2], [Zn(C5H11N3S)(2-pic)2(SO4)] and [Cu(C5H11N3S)(2-pic)2(CH3COO)2] were active against S. aureus. Against E. coli, [Zn(C5H11N3S)(2- pic)2(SO4)] showed activity at 18-20 mg dose range.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:17

Enthalten in:

Current computer-aided drug design - 17(2021), 1 vom: 01., Seite 107-122

Sprache:

Englisch

Beteiligte Personen:

Khan, Tahmeena [VerfasserIn]
Ahmad, Rumana [VerfasserIn]
Azad, Iqbal [VerfasserIn]
Raza, Saman [VerfasserIn]
Joshi, Seema [VerfasserIn]
Khan, Abdul R [VerfasserIn]

Links:

Volltext

Themen:

Anti-Bacterial Agents
Antineoplastic Agents
Cancer
Computational
Coordination Complexes
Docking
Druglikeness
Hydrazinecarbothioamide
Hydrazines
Journal Article
Ligands
Mixed
Thioamides
Thiosemicarbazone

Anmerkungen:

Date Completed 21.10.2021

Date Revised 21.10.2021

published: Print

Citation Status MEDLINE

doi:

10.2174/1573409915666190926122103

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM301645957