Epigenetic Inheritance Underlying Pulmonary Arterial Hypertension

In pulmonary arterial hypertension (PAH), the Warburg effect (glycolytic shift) and mitochondrial fission are determinants of phenotype alterations characteristic of the disease, such as proliferation, apoptosis resistance, migration, endothelial-mesenchymal transition, and extracellular matrix stiffness. Current therapies, focusing largely on vasodilation and antithrombotic protection, do not restore these aberrant phenotypes suggesting that additional pathways need be targeted. The multifactorial nature of PAH suggests epigenetic changes as potential determinants of vascular remodeling. Transgenerational epigenetic changes induced by hypoxia can result in permanent changes early in fetal development increasing PAH risk in adulthood. Unlike genetic mutations, epigenetic changes are pharmacologically reversible, making them an attractive target as therapeutic strategies for PAH. This review offers a landscape of the most current clinical, epigenetic-sensitive changes contributing to PAH vascular remodeling both in early and later life, with a focus on a network medicine strategy. Furthermore, we discuss the importance of the application (from morphogenesis to disease onset) of molecular network-based algorithms to dissect PAH molecular pathobiology. Additionally, we suggest an integrated network-based program for clinical disease gene discovery that may reveal novel biomarkers and novel disease targets, thus offering a truly innovative path toward redefining and treating PAH, as well as facilitating the trajectory of a comprehensive precision medicine approach to PAH.

Medienart:

E-Artikel

Erscheinungsjahr:

2019

Erschienen:

2019

Enthalten in:

Zur Gesamtaufnahme - volume:39

Enthalten in:

Arteriosclerosis, thrombosis, and vascular biology - 39(2019), 4 vom: 06. Apr., Seite 653-664

Sprache:

Englisch

Beteiligte Personen:

Napoli, Claudio [VerfasserIn]
Benincasa, Giuditta [VerfasserIn]
Loscalzo, Joseph [VerfasserIn]

Links:

Volltext

Themen:

Apoptosis
Biomarkers
Hypoxia
Journal Article
MicroRNAs
Mutation
Primary prevention
RNA, Long Noncoding
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review

Anmerkungen:

Date Completed 13.01.2020

Date Revised 01.04.2020

published: Print

Citation Status MEDLINE

doi:

10.1161/ATVBAHA.118.312262

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM293538506