A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer (Cervus elaphus)

Copyright © 2018 Johnston et al..

Recombination is a fundamental feature of sexual reproduction, ensuring proper disjunction, preventing mutation accumulation and generating new allelic combinations upon which selection can act. However it is also mutagenic, and breaks up favorable allelic combinations previously built up by selection. Identifying the genetic drivers of recombination rate variation is a key step in understanding the causes and consequences of this variation, how loci associated with recombination are evolving and how they affect the potential of a population to respond to selection. However, to date, few studies have examined the genetic architecture of recombination rate variation in natural populations. Here, we use pedigree data from ∼ 2,600 individuals genotyped at ∼ 38,000 SNPs to investigate the genetic architecture of individual autosomal recombination rate in a wild population of red deer (Cervus elaphus). Female red deer exhibited a higher mean and phenotypic variance in autosomal crossover counts (ACC). Animal models fitting genomic relatedness matrices showed that ACC was heritable in females ([Formula: see text] = 0.12) but not in males. A regional heritability mapping approach showed that almost all heritable variation in female ACC was explained by a genomic region on deer linkage group 12 containing the candidate loci REC8 and RNF212B, with an additional region on linkage group 32 containing TOP2B approaching genome-wide significance. The REC8/RNF212B region and its paralogue RNF212 have been associated with recombination in cattle, mice, humans and sheep. Our findings suggest that mammalian recombination rates have a relatively conserved genetic architecture in both domesticated and wild systems, and provide a foundation for understanding the association between recombination loci and individual fitness within this population.

Medienart:

E-Artikel

Erscheinungsjahr:

2018

Erschienen:

2018

Enthalten in:

Zur Gesamtaufnahme - volume:8

Enthalten in:

G3 (Bethesda, Md.) - 8(2018), 7 vom: 02. Juli, Seite 2265-2276

Sprache:

Englisch

Beteiligte Personen:

Johnston, Susan E [VerfasserIn]
Huisman, Jisca [VerfasserIn]
Pemberton, Josephine M [VerfasserIn]

Links:

Volltext

Themen:

Crossover
Genome-wide association study
Genomic relatedness
Heritability
Journal Article
Meiotic recombination
Red deer
Research Support, Non-U.S. Gov't

Anmerkungen:

Date Completed 08.11.2018

Date Revised 26.09.2023

published: Electronic

Citation Status MEDLINE

doi:

10.1534/g3.118.200063

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM284112844