Effect of Hypoxia-regulated Polo-like Kinase 3 (Plk3) on Human Limbal Stem Cell Differentiation

© 2016 by The American Society for Biochemistry and Molecular Biology, Inc..

Hypoxic conditions in the cornea affect epithelial function by activating Polo-like kinase 3 (Plk3) signaling and the c-Jun·AP-1 transcription complex, resulting in apoptosis of corneal epithelial cells. Hypoxic stress in the culture conditions also regulates limbal stem cell growth and fate. In this study, we demonstrate that there is a differential response of Plk3 in hypoxic stress-induced primary human limbal stem (HLS) and corneal epithelial (HCE) cells, resulting in different pathways of cell fate. We found that hypoxic stress induced HLS cell differentiation by down-regulating Plk3 activity at the transcription level, which was opposite to the effect of hypoxic stress on Plk3 activation to elicit HCE cell apoptosis, detected by DNA fragmentation and TUNEL assays. Hypoxic stress-induced increases in c-Jun phosphorylation/activation were not observed in HLS cells because Plk3 expression and activity were suppressed in hypoxia-induced HLS cells. Instead, hypoxic stress-induced HLS cell differentiation was monitored by cell cycle analysis and measured by the decrease and increase in p63 and keratin 12 expression, respectively. Hypoxic stress-induced Plk3 signaling to regulate c-Jun activity, resulting in limbal stem cell differentiation and center epithelial apoptosis, was also found in the corneas of wild-type and Plk3(-/-)-deficient mice. Our results, for the first time, reveal the differential effects of hypoxic stress on Plk3 activity in HLS and HCE cells. Instead of apoptosis, hypoxic stress suppresses Plk3 activity to protect limbal stem cells from death and to allow the process of HLS cell differentiation.

Medienart:

E-Artikel

Erscheinungsjahr:

2016

Erschienen:

2016

Enthalten in:

Zur Gesamtaufnahme - volume:291

Enthalten in:

The Journal of biological chemistry - 291(2016), 32 vom: 05. Aug., Seite 16519-29

Sprache:

Englisch

Beteiligte Personen:

Wang, Ling [VerfasserIn]
González, Sheyla [VerfasserIn]
Dai, Wei [VerfasserIn]
Deng, Sophie [VerfasserIn]
Lu, Luo [VerfasserIn]

Links:

Volltext

Themen:

C-Jun transcription factor
Cell death
Cell differentiation
Cornea
EC 2.7.1.-
EC 2.7.11.1
Epithelial cell
Journal Article
PLK3 protein, human
Phosphoproteins
Plk3 protein, mouse
Protein Serine-Threonine Kinases
Protein kinase
Signal transduction
Stem cells
TP63 protein, human
Trans-Activators
Transcription Factors
Transcription regulation
Trp63 protein, mouse
Tumor Suppressor Proteins

Anmerkungen:

Date Completed 05.05.2017

Date Revised 04.12.2021

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1074/jbc.M116.725747

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM261233335