A versatile proximity-dependent probe based on light-up DNA-scaffolded silver nanoclusters

It is well-known that proximity-dependent probes containing an analyte recognization site and a signal formation domain could be assembled specifically into a sandwich-like structure (probe-analyte-probe) via introducing an analyte. In this work, using the design for zirconium ion (Zr(4+)) detection as the model, we develop a novel and reliable proximity-dependent DNA-scaffolded silver nanocluster (DNA/AgNC) probe for Zr(4+) detection via target-induced emitter proximity. The proposed strategy undergoes the two following processes: target-mediated emitter pair proximity as target recognition implement and the synthesis of DNA/AgNCs with fluorescence as a signal reporter. Upon combination of the rationally designed probe with Zr(4+), the intact templates were obtained according to the -PO3(2-)-Zr(4+)-PO3(2-)- pattern. The resultant structure with an emitter pair serves as a potent template to achieve highly fluorescent DNA/AgNCs. To verify the universality of the proposed proximity-dependent DNA/AgNC probe, we extend the application of the proximity-dependent probe to DNA and adenosine triphosphate (ATP) detection by virtue of a specific DNA complementary sequence and ATP aptamer as a recognition unit, respectively. The produced fluorescence enhancement of the DNA/AgNCs in response to the analyte concentration allows a quantitative evaluation of the target, including Zr(4+), DNA, and ATP with detection limits of ∼3.00 μM, ∼9.83 nM, and ∼0.81 mM, respectively. The proposed probe possesses good performance with simple operation, cost-effectiveness, good selectivity, and without separation procedures.

Medienart:

E-Artikel

Erscheinungsjahr:

2016

Erschienen:

2016

Enthalten in:

Zur Gesamtaufnahme - volume:141

Enthalten in:

The Analyst - 141(2016), 4 vom: 21. Feb., Seite 1301-6

Sprache:

Englisch

Beteiligte Personen:

Ma, Jin-Liang [VerfasserIn]
Yin, Bin-Cheng [VerfasserIn]
Ye, Bang-Ce [VerfasserIn]

Links:

Volltext

Themen:

3M4G523W1G
8L70Q75FXE
9007-49-2
Adenosine Triphosphate
Aptamers, Nucleotide
C6V6S92N3C
DNA
Journal Article
Research Support, Non-U.S. Gov't
Silver
Zirconium

Anmerkungen:

Date Completed 10.01.2017

Date Revised 11.01.2017

published: Print

Citation Status MEDLINE

doi:

10.1039/c5an02446c

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM256874441