A preliminary study of imaging paclitaxel-induced tumor apoptosis with (99)Tc(m)-His10-Annexin V

BACKGROUND: In tumors the process of apoptosis occurs over an interval of time after chemotherapy. It is important to determine the best time for detecting apoptosis by in vivo imaging. In this study, we evaluated the dynamics and feasibility of imaging non-small cell lung cancer (NSCLC) apoptosis induced by paclitaxel treatment using a (99)Tc(m)-labeled Annexin V recombinant with ten consecutive histidines (His10-Annexin V) in a mouse model.

METHODS: (99)Tc(m)-His10-Annexin V was prepared by one step direct labeling; radio-chemical purity (RCP) and radio-stability was tested. The binding of (99)Tc(m)-His10-Annexin V to apoptotic cells was validated in vitro using camptothecin-induced Jurkat cells. In vivo bio-distribution was determined in mice by dissection. The human H460 NSCLC tumor cell line (H460) tumor-bearing mice were treated with intravenous paclitaxel 24, 48 and 72 hours later. (99)Tc(m)-His10-Annexin V was injected intravenously, and planar images were acquired at 2, 4 and 6 hours post-injection on a dual-head gamma camera fitted with a pinhole collimator. Tumor-to-normal tissue ratios (T/NT) were calculated by ROI analysis and they reflected specific binding of (99)Tc(m)-His10-Annexin V. Mice were sacrificed after imaging. Caspase-3, as the apoptosis detector, was determined by flow cytometry, and DNA fragmentation was analyzed by the terminal deoxynucleotidytransferase mediated dUTP nick-end labeling (TUNEL) assay. Nonspecific accumulation of protein was estimated using bovine serum albumin (BSA). The imaging data were correlated with TUNEL-positive nuclei and caspase-3 activity.

RESULTS: (99)Tc(m)-His10-Annexin V had a RCP > 98% and high stability 2 hours after radio-labeling, and it could bind to apoptotic cells with high affinity. Bio-distribution of (99)Tc(m)-His10-Annexin V showed predominant uptake in kidney, relatively low uptake in myocardium, liver and gastrointestinal tract, and rapid clearance from blood and kidney was observed. The T/NT was significantly increased after paclitaxel treatment, whereas it was low in untreated tumors (T/NT = 1.43 ± 0.18). The %ID/g activity in Group 2 (24 hours), Group 3 (48 hours) and Group 4 (72 hours) after treatment was 2.55 ± 0.73, 3.35 ± 1.10, and 3.4 ± 0.96, respectively. Whereas in the non-treated group, Group 1, %ID/g was 1.10 ± 0.18. The radiotracer uptake was positively correlated to the apoptotic index (r = 0.852, P < 0.01), as well as caspase-3 activity (r = 0.816, P < 0.01).

CONCLUSION: This study addresses the dynamics and feasibility of imaging non-small cell lung tumor apoptosis using (99)Tc(m)- His10-Annexin V.

Medienart:

E-Artikel

Erscheinungsjahr:

2013

Erschienen:

2013

Enthalten in:

Zur Gesamtaufnahme - volume:126

Enthalten in:

Chinese medical journal - 126(2013), 15 vom: 16., Seite 2928-33

Sprache:

Englisch

Beteiligte Personen:

Zheng, Yu-min [VerfasserIn]
Wang, Feng [VerfasserIn]
Fang, Wei [VerfasserIn]
Hua, Zi-chun [VerfasserIn]
Wang, Zi-zheng [VerfasserIn]
Meng, Qing-le [VerfasserIn]
Yan, Jue [VerfasserIn]

Themen:

4QD397987E
Annexin A5
Antineoplastic Agents, Phytogenic
Histidine
Journal Article
Organotechnetium Compounds
P88XT4IS4D
Paclitaxel
Radiopharmaceuticals
Technetium Tc 99m annexin V

Anmerkungen:

Date Completed 21.03.2014

Date Revised 19.11.2015

published: Print

Citation Status MEDLINE

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM229829465