S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation

RATIONALE: Mice lacking the EF-hand Ca2+ sensor S100A1 display endothelial dysfunction because of distorted Ca2+ -activated nitric oxide (NO) generation.

OBJECTIVE: To determine the pathophysiological role of S100A1 in endothelial cell (EC) function in experimental ischemic revascularization.

METHODS AND RESULTS: Patients with chronic critical limb ischemia showed almost complete loss of S100A1 expression in hypoxic tissue. Ensuing studies in S100A1 knockout (SKO) mice subjected to femoral artery resection unveiled insufficient perfusion recovery and high rates of autoamputation. Defective in vivo angiogenesis prompted cellular studies in SKO ECs and human ECs, with small interfering RNA-mediated S100A1 knockdown demonstrating impaired in vitro and in vivo proangiogenic properties (proliferation, migration, tube formation) and attenuated vascular endothelial growth factor (VEGF)-stimulated and hypoxia-stimulated endothelial NO synthase (eNOS) activity. Mechanistically, S100A1 deficiency compromised eNOS activity in ECs by interrupted stimulatory S100A1/eNOS interaction and protein kinase C hyperactivation that resulted in inhibitory eNOS phosphorylation and enhanced VEGF receptor-2 degradation with attenuated VEGF signaling. Ischemic SKO tissue recapitulated the same molecular abnormalities with insufficient in vivo NO generation. Unresolved ischemia entailed excessive VEGF accumulation in SKO mice with aggravated VEGF receptor-2 degradation and blunted in vivo signaling through the proangiogenic phosphoinositide-3-kinase/Akt/eNOS cascade. The NO supplementation strategies rescued defective angiogenesis and salvaged limbs in SKO mice after femoral artery resection.

CONCLUSIONS: Our study shows for the first time downregulation of S100A1 expression in patients with critical limb ischemia and identifies S100A1 as critical for EC function in postnatal ischemic angiogenesis. These findings link its pathological plasticity in critical limb ischemia to impaired neovascularization, prompting further studies to probe the microvascular therapeutic potential of S100A1.

Errataetall:

CommentIn: Circ Res. 2013 Jan 4;112(1):3-5. - PMID 23287450

Medienart:

E-Artikel

Erscheinungsjahr:

2013

Erschienen:

2013

Enthalten in:

Zur Gesamtaufnahme - volume:112

Enthalten in:

Circulation research - 112(2013), 1 vom: 04. Jan., Seite 66-78

Sprache:

Englisch

Beteiligte Personen:

Most, Patrick [VerfasserIn]
Lerchenmüller, Carolin [VerfasserIn]
Rengo, Giuseppe [VerfasserIn]
Mahlmann, Adrian [VerfasserIn]
Ritterhoff, Julia [VerfasserIn]
Rohde, David [VerfasserIn]
Goodman, Chelain [VerfasserIn]
Busch, Cornelius J [VerfasserIn]
Laube, Felix [VerfasserIn]
Heissenberg, Julian [VerfasserIn]
Pleger, Sven T [VerfasserIn]
Weiss, Norbert [VerfasserIn]
Katus, Hugo A [VerfasserIn]
Koch, Walter J [VerfasserIn]
Peppel, Karsten [VerfasserIn]

Links:

Volltext

Themen:

31C4KY9ESH
Calcium
EC 1.14.13.39
EC 2.7.1.137
EC 2.7.10.1
EC 2.7.11.1
EC 2.7.11.13
Journal Article
NOS3 protein, human
Nitric Oxide
Nitric Oxide Donors
Nitric Oxide Synthase Type III
Nos3 protein, mouse
Phosphatidylinositol 3-Kinase
Protein Kinase C
Proto-Oncogene Proteins c-akt
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
S100 Proteins
S100A1 protein
SY7Q814VUP
Vascular Endothelial Growth Factor A
Vascular Endothelial Growth Factor Receptor-2
Vascular endothelial growth factor A, mouse

Anmerkungen:

Date Completed 27.02.2013

Date Revised 21.10.2021

published: Print-Electronic

CommentIn: Circ Res. 2013 Jan 4;112(1):3-5. - PMID 23287450

Citation Status MEDLINE

doi:

10.1161/CIRCRESAHA.112.275156

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM221674330