Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry

We investigated the outcome of the interaction of Cryptococcus neoformans with murine macrophages using laser scanning cytometry (LSC). Previous results in our lab had shown that phagocytosis of C. neoformans promoted cell cycle progression. LSC allowed us to simultaneously measure the phagocytic index, macrophage DNA content, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation such that it was possible to study host cell division as a function of phagocytosis. LSC proved to be a robust, reliable, and high-throughput method for quantifying phagocytosis. Phagocytosis of C. neoformans promoted cell cycle progression, but infected macrophages were significantly less likely to complete mitosis. Hence, we report a new cytotoxic effect associated with intracellular C. neoformans residence that manifested itself in impaired cell cycle completion as a consequence of a block in the G(2)/M stage of the mitotic cell cycle. Cell cycle arrest was not due to increased cell membrane permeability or DNA damage. We investigated alveolar macrophage replication in vivo and demonstrated that these cells are capable of low levels of cell division in the presence or absence of C. neoformans infection. In summary, we simultaneously studied phagocytosis, the cell cycle state of the host cell and pathogen-mediated cytotoxicity, and our results demonstrate a new cytotoxic effect of C. neoformans infection on murine macrophages: fungus-induced cell cycle arrest. Finally, we provide evidence for alveolar macrophage proliferation in vivo.

Medienart:

E-Artikel

Erscheinungsjahr:

2012

Erschienen:

2012

Enthalten in:

Zur Gesamtaufnahme - volume:80

Enthalten in:

Infection and immunity - 80(2012), 4 vom: 14. Apr., Seite 1467-78

Sprache:

Englisch

Beteiligte Personen:

Coelho, Carolina [VerfasserIn]
Tesfa, Lydia [VerfasserIn]
Zhang, Jinghang [VerfasserIn]
Rivera, Johanna [VerfasserIn]
Gonçalves, Teresa [VerfasserIn]
Casadevall, Arturo [VerfasserIn]

Links:

Volltext

Themen:

5-ethynyl-2'-deoxyuridine
82115-62-6
Deoxyuridine
G373S00W2J
Interferon-gamma
Journal Article
Lipopolysaccharides
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
W78I7AY22C

Anmerkungen:

Date Completed 10.05.2012

Date Revised 21.10.2021

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1128/IAI.06332-11

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM214630080