Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds

Copyright © 2011 Elsevier Ltd. All rights reserved..

Engineering complex tissues is important but difficult to achieve in tissue regeneration. Osteochondral tissue engineering for the repair of osteochondral defect, involving simultaneous regeneration of bone and cartilage, has attracted considerable attention and also serves as an optimal model system for developing effective strategies aimed at regenerating complex tissues. In the present study, we formulated a bilayered gene-activated osteochondral scaffold consisting of plasmid TGF-β1-activated chitosan-gelatin scaffold for chondrogenic layer and plasmid BMP-2-activated hydroxyapatite/chitosan-gelatin scaffold for osteogenic layer. Mesenchymal stem cells seeded in each layer of the bilayered gene- activated osteochondral scaffold showed significant cell proliferation, high expression of TGF-β1 protein and BMP-2 protein respectively. The results showed that spatially controlled and localized gene delivery system in the bilayered integrated scaffolds could induce the mesenchymal stem cells in different layers to differentiate into chondrocytes and osteoblasts in vitro, respectively, and simultaneously support the articular cartilage and subchondral bone regeneration in the rabbit knee ostochondral defect model. This study gives the evidence that multi-tissue regeneration through the combination of biomimetic and multi-phasic scaffold design, spatially controlled and localized gene delivery system and multi-lineage differentiation of a single stem cell population represents a promising strategy for facilitating the development of complex tissue or organ systems.

Medienart:

E-Artikel

Erscheinungsjahr:

2011

Erschienen:

2011

Enthalten in:

Zur Gesamtaufnahme - volume:32

Enthalten in:

Biomaterials - 32(2011), 21 vom: 01. Juli, Seite 4793-805

Sprache:

Englisch

Beteiligte Personen:

Chen, Jiangning [VerfasserIn]
Chen, Huan [VerfasserIn]
Li, Pei [VerfasserIn]
Diao, Huajia [VerfasserIn]
Zhu, Shiyu [VerfasserIn]
Dong, Lei [VerfasserIn]
Wang, Rui [VerfasserIn]
Guo, Ting [VerfasserIn]
Zhao, Jianning [VerfasserIn]
Zhang, Junfeng [VerfasserIn]

Links:

Volltext

Themen:

Biocompatible Materials
Bone Morphogenetic Protein 2
Evaluation Study
Journal Article
Research Support, Non-U.S. Gov't
Transforming Growth Factor beta1

Anmerkungen:

Date Completed 29.08.2011

Date Revised 08.04.2022

published: Print-Electronic

Citation Status MEDLINE

doi:

10.1016/j.biomaterials.2011.03.041

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM207441707