Growth of the human corpus callosum : modular and laminar morphogenetic zones

The purpose of this focused review is to present and discuss recent data on the changing organization of cerebral midline structures that support the growth and development of the largest commissure in humans, the corpus callosum. We will put an emphasis on the callosal growth during the period between 20 and 45 postconceptual weeks (PCW) and focus on the advantages of a correlated histological/magnetic resonance imaging (MRI) approach. The midline structures that mediate development of the corpus callosum in rodents, also mediate its early growth in humans. However, later phases of callosal growth in humans show additional medial transient structures: grooves made up of callosal septa and the subcallosal zone. These modular (septa) and laminar (subcallosal zone) structures enable the growth of axons along the ventral callosal tier after 18 PCW, during the rapid increase in size of the callosal midsagittal cross-section area. Glial fibrillary acidic protein positive cells, neurons, guidance molecule semaphorin3A in cells and extracellular matrix (ECM), and chondroitin sulfate proteoglycan in the ECM have been identified along the ventral callosal tier in the protruding septa and subcallosal zone. Postmortem MRI at 3 T can demonstrate transient structures based on higher water content in ECM, and give us the possibility to follow the growth of the corpus callosum in vivo, due to the characteristic MR signal. Knowledge about structural properties of midline morphogenetic structures may facilitate analysis of the development of interhemispheric connections in the normal and abnormal fetal human brain.

Medienart:

E-Artikel

Erscheinungsjahr:

2009

Erschienen:

2009

Enthalten in:

Zur Gesamtaufnahme - volume:3

Enthalten in:

Frontiers in neuroanatomy - 3(2009) vom: 25., Seite 6

Sprache:

Englisch

Beteiligte Personen:

Jovanov-Milosević, Natasa [VerfasserIn]
Culjat, Marko [VerfasserIn]
Kostović, Ivica [VerfasserIn]

Links:

Volltext

Themen:

Callosal septa
Fetal brain
Glia of indusium griseum
Journal Article
Magnetic resonance imaging
Midline structures
Semaphorin3A

Anmerkungen:

Date Completed 14.07.2011

Date Revised 20.10.2021

published: Electronic-eCollection

Citation Status PubMed-not-MEDLINE

doi:

10.3389/neuro.05.006.2009

funding:

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

NLM189621907