Overexpression of MRP3 in HeLa-UGT1A9 Cells Enhances Glucuronidation Capability of the Cells / Qiong Zhou, Bijun Xia, Taijun Yin, Yu He, Ling Ye, Ming Hu

Background: The interplay between phase II enzymes and efflux transporters leads to extensive metabolism and low systemic bioavailability of flavonoids. Objective: In this study, the dynamic interplay between multiple UGTs and multiple efflux transporters that occur inside the cells was fully investigated. Methods: A new HeLa-UGT1A9-MRP3 cell was established to overexpress two dominant efflux transporters MRP3 and BCRP, and two UGT isoforms UGT1A9 and UGT1A3. The metabolism and glucuronides excretion for a model flavonoid genistein were determined in HeLa-UGT1A9-MRP3 cells and HeLa-UGT1A9-Con cells that overexpressed one UGT (1A9) and one efflux transporter (BCRP). Results: The excretion rate grew nearly 6-fold, cellular clearance of glucuronides increased about 3-fold, and fraction of genistein metabolized (fmet) increased (14%, p<0.01) in the new cells. Small interfering (siRNA)-mediated MRP3 functional knockdown resulted in marked decreases in the excretion rates (26%-78%), intracellular amounts (56%-93%), and cellular clearance (54%-96%) in both cells, but the magnitude of the differences in HeLa- UGT1A9-Con cells was relatively small. Reductions in fmet values were similarly moderate (11%-14%). In contrast, UGT1A9 knockdown with siRNA caused large decreases in the excretion rates (46%-88%), intracellular amounts (80%-97%), cellular clearance (80%-98%) as well as fmet value (33%-43%, p<0.01) in both UGT1A9 cells. Comparisons of the kinetic parameters and profiles of genistein glucuronidation as well as UGT mRNA expression suggest that HeLa-UGT1A9-MRP3 has increased expression of both MRP3 and UGT1A3. Conclusion: The newly engineered HeLa-UGT1A9-MRP3 cells is an appropriate model to study the kinetic interplay between multiple UGTs and efflux transporters, and a promising biosynthetic tool to obtain flavonoid glucuronides of high purity.

Medienart:

E-Artikel

Erscheinungsjahr:

2021

Erschienen:

2021

Enthalten in:

Zur Gesamtaufnahme - volume:22

Enthalten in:

Current drug metabolism - 22(2021), 10, Seite 12

Sprache:

Englisch

Beteiligte Personen:

Zhou, Qiong [VerfasserIn]
Xia, Bijun [VerfasserIn]
Yin, Taijun [VerfasserIn]
He, Yu [VerfasserIn]
Ye, Ling [VerfasserIn]
Hu, Ming [VerfasserIn]

Links:

FID Access [lizenzpflichtig]

Umfang:

1 Online-Ressource (12 p)

Förderinstitution / Projekttitel:

PPN (Katalog-ID):

KFL011146842